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1 Introduction

1.1 Logic

Meaning Command Notation
Not \neg ¬
There exists \exists ∃
For all \forall ∀
Implies \implies ⇒
Equivalent \iff ⇐⇒
And \land ∧
Or \lor ∨
Defined as := :=
Logical equivalence \equiv ≡
Therefore \therefore ∴
Because \because ∵

Truth table

P Q P ⇒ Q ¬P P ∨Q P ∧Q
T T T F T F
T F F F T F
F T T T T F
F F T T F F

∗These notes are intended to summarize the main concepts, definitions and results covered in
the first year of micro, macro and metrics sequence for the Economics PhD of the University of
Minnesota. The material is not my own. Please let me know of any errors that persist in the
document. E-mail: pawel042@umn.edu .
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Logical equivalences

Commutative p ∧ q ⇐⇒ q ∧ p p ∨ q ⇐⇒ q ∨ p
Associative (p ∧ q) ∧ r ⇐⇒ p ∧ (q ∧ r) (p ∨ q) ∨ r ⇐⇒ p ∨ (q ∨ r)
Distributive p ∧ (q ∨ r)⇐⇒ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r)⇐⇒ (p ∨ q) ∧ (p ∨ r)
Identity p ∧ T ⇐⇒ p p ∨F ⇐⇒ p
Negation p∨ ∼ p⇐⇒ T p ∧ ∼ p⇐⇒ F
Double Negative ∼ (∼ p)⇐⇒ p
Idempotent p ∧ p⇐⇒ p p ∨ p⇐⇒ p
Universal Bound p ∨ T ⇐⇒ T p ∧F ⇐⇒ F
De Morgan’s ∼ (p ∧ q)⇐⇒ (∼ p) ∨ (∼ q) ∼ (p ∨ q)⇐⇒ (∼ p) ∧ (∼ q)
Absorption p ∨ (p ∧ q)⇐⇒ p p ∧ (p ∨ q)⇐⇒ p
Conditional (p =⇒ q)⇐⇒ (∼ p ∨ q) ∼ (p =⇒ q)⇐⇒ (p∧ ∼ q)

1.2 Greek letters

Command Notation Command Notation
\alpha α \tau τ
\beta β \theta θ
\chi χ \upsilon υ
\delta δ \xi ξ
\epsilon ε \zeta ζ
\varepsilon ε \Delta ∆
\eta η \Gamma Γ
\gamma γ \Lambda Λ
\iota ι \Omega Ω
\kappa κ \Phi Φ
\lambda λ \Pi Π
\mu µ \Psi Ψ
\nu ν \Sigma Σ
\omega ω \Theta Θ
\phi φ \Upsilon Υ
\varphi ϕ \Xi Ξ
\pi π \aleph ℵ
\psi ψ \beth i
\rho ρ \daleth k
\sigma σ \gimel ג

1.3 Proving Things

Let P and Q be two statements.

• We say that ”P implies Q ”, or ”if P then Q”, and note P ⇒ Q, if Q is true
when P is true.

• We say that P is a sufficient condition for Q, and Q is a necessary con-
dition for P .

• P ⇒ Q and Q⇒ P are two very different statements. We call one the converse
of the other.
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• We say that ”P and Q are equivalent”, or ”P if and only if (iff) ⇐⇒ Q”, and
note P ⇔ Q, if P implies Q and Q implies P.

• The implication P ⇒ Q is equivalent to its contrapositive not(Q)⇒ not(P).

• If P is a statement, the negation of P, not(P), is true when P is false and false
when P is true. Notice that the negation ”reverses the quantifiers”:

not(∃x ∈ X : P(x)) is equivalent to ∀x ∈ X : not(P (x))
not(∀x ∈ X : P(x)) is equivalent to ∃x ∈ X : not(P (x))

Types of proofs:

1. To prove that ” ∀x : P (x) ” is false, we look for a counter-example. Exercises
are sometimes phrased ”Provide a proof if it is true, and a counter-example if
it is false”; but ”prove your answer” is an equivalent requirement, as providing
a counter-example proves the negation. If only such statement is indeed false.

2. Sometimes, it is easier to prove the implication P ⇒ Q by proving its contra-
diction not(Q)⇒ not(P). We call it a proof by contradiction or reductio
ad absurdum or indirect proof. A proof by contradiction is sometimes very
helpful, as standard methods of proofs do not work. To prove P by contradic-
tion, we assume not(P) and derive true statements until we end up proving
that a statement we know to be true is false (this can be any statement in the
mathematical edifice).

3. An equivalence consists of two implications. To show an equivalence, we
show both implications.

4. Proving a ∀. To prove a statement of the form ” ∀x ∈ X : P (x) ”, we fix an
x ∈ X, and prove P (x), being careful to use a reasoning that applies to any
x ∈ X.

5. Proving a ∃. Proving a statement of the form ” ∃x ∈ X : P (x) ” is more
difficult. We need to find point at an x that works-and satisfies P(x)

6. Proving uniqueness To show that ” ∃!x : P (x)”, show existence and unique-
ness separately. To show uniqueness, assume there exist two x such that P (x)
and show that they are equal.

7. Induction or proof by induction. We want to show that

∀n ∈ N : P (n)

To prove this by induction, we prove two things:

(a) The base case: we prove P (0) (or P (N) more generally).

(b) The inductive step: we prove that P (n) implies P (n+ 1) for all n ∈ N
(or for all n ≥ N more generally).
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1.4 General notation

• x ∈ A - x is an element of set A

• B ⊆ C - set B is a subset of set C

• B = C ⇐⇒ B ⊆ C and C ⊆ B

• N = {0, 1, 2 . . .} natural numbers

• Z = {. . . ,−2,−1, 0, 1, 2 . . .} integers

• Q = {q : ∃a, b ∈ Z q = a
b
} rational number

• R real numbers

• Rn := {x = (x1, . . . , xi . . . , xn) : xi ∈ R, ∀i = 1, . . . , n} n- dimensional real
Euclidean space

• Rn
+ := {x = (x1, . . . , xi . . . , xn) : xi ≥ 0, ∀i = 1, . . . , n, and x 6= 0}

• For x ∈ Rn and y ∈ Rn we denote

x ≥ y ⇐⇒ xi ≥ yi, ∀i = 1, . . . , n
x > y ⇐⇒ x ≥ y and x 6= y
x� y ⇐⇒ xi > yi,∀i = 1, . . . , n

• Cartesian Product of a finite collection of sets E1, E2, . . . , En is the set of or-
dered n -tuples E1×E2×· · ·×En = {(x1, x2, . . . , xn) : xj ∈ Ej ∀j = 1, 2, . . . n}

• x · y or < x, y > denotes the scalar product of x and y ∈ Rn so x · y =
n∑
i=1

xiyi

• A matrix A ∈ Rm×n is a matrix with m rows and n columns with (i, j) entry
aij

• A is a matrix with m rows and n columns and B is a matrix with n rows and
l columns, AB denotes the matrix product of A and B.

• H is a n × n matrix, tr (H) denotes the trace of H, det(H) denotes the
determinant of H, and cof(H) denotes cofactor of H

• x ∈ Rn is treated as a row matrix so 1× n.

• ei = (0, . . . , 1, . . . , 0)- ith standard coordinate vector

• xT denotes the transpose of x ∈ Rn, xT is treated as a column matrix so n×1.

• f : X → R so f is a function from ( open set ) X ⊆ Rn to R

• f ∈ Cp - function f is Cp class- derivatives up to order p are continuous

• f ∈ C0- function f is continuous
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2 Binary relations

Definition 1. Assumptions on binary relations (R :�, P :�, I :∼)

a reflexive : ∀a aRa

b irreflexive: ∀a ¬(aRa)

c symmetric: ∀a,b aRb ⇐⇒ bRa

d asymmetric: ∀a,b aRb ⇐⇒ ¬(bRa)

e antisymmetric: ∀a,b aRb ∧ bRa⇒ a = b

f complete: ∀a,b aRb ∨ bRa

g transitive ∀a,b,c aRb ∧ bRc⇒ aRc

h negative transitive ∀a,b,c ¬(aRb) ∧ ¬(bRc)⇒ ¬(aRc)

Definition 2. Main categories of binary relations

a (Weak) Preorder aka Preference Relation- Reflexive, Transitive

b Equivalence Relation- Reflexive, Symmetric, Transitive

c Strict partial order -Asymmetric, Transitive

d Partial Order- Reflexive, Antisymmetric, Transitive

e Total (or Linear) Order- Antisymmetric, Complete, Transitive

2.1 Monotonicity and Nonsatiation

Assume that relation R :=� is a preorder.

Definition 3. � is weakly monotone on a set X if ∀x, y ∈ X,

x ≥ y ⇒ x � y

Definition 4. � is monotone on a set X if ∀x, y ∈ X,

x� y ⇒ x � y

.

Definition 5. � is strongly monotone on a set X if ∀x, y ∈ X,

(x ≥ y ∧ x 6= y)⇒ x � y

.

Definition 6. � is locally nonsatiated on a set X if

∀x ∈ X and ∀ε > 0 ⇒ ∃y ∈ X 3‖ x− y ‖< ε and y � x
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2.2 Convexity

Definition 7. � is weakly convex on a set X if ∀x, y ∈ X, ∀λ ∈ (0, 1),

x � y ⇒ λx+ (1− λ)y � y

Definition 8. � is convex on a set X if ∀x, y ∈ X, ∀λ ∈ (0, 1),

x � y ⇒ λx+ (1− λ)y � y

Definition 9. � is strongly/strictly convex on a set X if ∀x, y ∈ X, ∀λ ∈ (0, 1),

x ∼ y ∧ x 6= y ⇒ λx+ (1− λ)y � y

2.3 Continuity

Definition 10 (Sequential definition/ weak continuity). A preorder � is con-
tinuous on a set X if ∀{xn}, {yn} ⊆ X,

∀n ∈ N, (xn � yn) ∧ (xn → x) ∧ (yn → y)⇒ x � y

Definition 11 (Set definition/ strong continuity). A preorder � is continuous
on a set X if ∀x ∈ X, the upper contour set U(x) = {y ∈ X : y � x} and the lower
contour set L(x) = {y ∈ X : x � y} are closed in X.

3 Real analysis

3.1 Properties of R
Definition 12 (The Algebraic Properties of R). On R there are two binary
operations: + and · and called addition and multiplication, respectively. These op-
erations satisfy the following properties:

a (commutative property of addition) a+ b = b+ a for all a, b in R

b (associative property of addition) (a+ b) + c = a+ (b+ c) for all a, b, c in R

c (existence of a zero element) ∃0 ∈ R s.t. ∀a ∈ R, 0 + a = a and a+ 0 = a

d (existence of negative elements) ∀a ∈ R,∃ − a ∈ R s.t. a + (−a) = 0 and
(−a) + a = 0

e (commutative property of multiplication) a · b = b · a for all a, b ∈ R

f (associative property of multiplication) (a · b) · c = a · (b · c) for all a, b, c in R

g (existence of a unit element) ∃1 ∈ R, 1 6= 0 s.t. ∀a ∈ R, 1 · a = a and a · 1 = a

h (existence of reciprocals) ∀a 6= 0, a ∈ R, exists an element 1/a ∈ R s.t. a ·
(1/a) = 1 and (1/a) · a = 1

i (distributive property of multiplication over addition) a · (b+c) = (a ·b)+(a ·c)
and (b+ c) · a = (b · a) + (c · a) for all a, b, c in R
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Definition 13 (Bounded Set). Let S ⊆ R, S 6= ∅, S is said to be

a bounded above if there exists a number u ∈ R, s.t. ∀s ∈ S, s ≤ u. Such u is
called an uupper bound of S.

b bounded below if there exists w ∈ R, s.t. ∀s ∈ S, s ≥ w. Such w is called a
lower bound of S.

c A set is said to be bounded if it both bounded above and below; unbounded if
not bounded.

Definition 14 (Sup and Inf). Let S ⊆ R, S 6= ∅

1. If S is bounded above, then a number u is said to be supremum (or a least
upper bound) of S if:

(a) u is an upper bound of S

(b) For any upper bound of S : v, u ≤ v

2. If S is bounded below, then a number w is said to be infimum (or a greatest
lower bound) of S if:

(a) w is an lower bound of S

(b) For any lower bound of S : t, t ≥ w

Lemma 1. A set S ⊆ R has only one supremum (same for infimum).

Definition 15 (Supremum). supS ⇐⇒ ∀ε>0∃a∈S supS − ε < a ≤ supS

Lemma 2. Every nonempty set of real numbers that has an upper bound also has a
supremum in R

Lemma 3 (Archimedean Property). If x ∈ R, then there exists nx ∈ N s.t.
x ≤ nx.

Lemma 4 (The Density Theorem). If x, y ∈ R, x < y, then there exists a
rational number r ∈ Q s.t. x < r < y.

Definition 16 (Nested). A sequence of intervals In, n ∈ N is nested if the following
chain of inclusions holds:

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · ·

Lemma 5 (Nested Intervals Property). If In = [an, bn] , n ∈ N, is a nested
sequence of closed bounded intervals, then there exists a number ξ ∈ R such that
ξ ∈ In for all n ∈ N
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3.2 Normed vector space Rn

From now on x ∈ Rn

Definition 17 ( Norm ). ‖ · ‖ : Rn → R such that

1. ‖x‖ ≥ 0 ∧ ‖x‖ = 0 iff x = 0 positive definiteness

2. ∀α∈R∀x∈Rn ‖αx‖ = |α|‖x‖ homogenity

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x,y∈Rn 4 -inequality

Examples

• Absolute Value of a real number x ∈ R:

|x| :=


x ifx > 0
0 ifx = 0
−x ifx < 0

• Euclidean norm: ‖x‖ = 〈x, x〉1/2 =

(
n∑
i=1

x2
i

)1/2

• 1-norm: ‖x‖1 =
∑n

i=1 |xi|

• L1 norm: ‖f‖L1 =
∫
|f(x)|dx

• sup norm: ‖x‖∞ = supi∈{1,...,n} |xi|
Definition 18 (Vector Space). A set E is called vector space, if it endowed with
two operations (or E is closed under both operations):

• Addition: E × E → E

• Scalar multiplication: R× E → E

s.t. ∀x, y, z ∈ E, a, b ∈ R

a (Commutativity) x+ y = y + x

b (Associativity) x+ (y + z) = (x+ y) + z

c (Existence of zero) ∃0 ∈ E s.t. ∀x ∈ E, x+ 0 = x

d (Existence of additive inverse) ∀x ∈ E,∃(−x) ∈ E s.t. x+ (−x) = 0

e (Associative) (ab)x = a(bx)

f (Distributive) a(x+ y) = ax+ ay, (a+ b)x = ax+ bx

Definition 19 (Normed Vector space). A normed vector space is a vector space
E endowed in a norm (which is a function) ‖ · ‖ : E → R

Theorem 1 (Cauchy-Schwarz inequality).

|〈x, y〉| ≤ ‖x‖‖y‖

Examples

• cov(X, Y ) = E(XY )− EX · EY ≤
√
V AR(X)

√
V AR(Y )

• (
∑n

i=1 uivi)
2 ≤ (

∑n
i=1 u

2
i ) (
∑n

i=1 v
2
i )
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3.3 Topology on Rn

Definition 20 (Convergence).

xn → x⇐⇒ ∀ε>0∃N∀k≥N xk ∈ Bε(a)

Definition 21 (Cauchy sequence). ∀ε>0∃N∀m,n>N ||xn − xm|| < ε

Definition 22 (Open ball). Bε(a) = {x ∈ Rn : ‖x− a‖ < ε} .

Definition 23 (Open set). V ⊆ Rn is open iff ∀x∈V ∃ε>0Bε(x) ⊆ V

Lemma 6. xk → a as k → ∞ if and only if for every open set V that contains a
there is an N ∈ N such that k ≥ N implies xk ∈ V

Definition 24 (Closed set). E ⊆ Rn is closed if Ec = Rn\E is open.

Lemma 7. E is closed if and only if E contains all its limit points; i.e., xk ∈ E
and xk → x imply x ∈ E

Definition 25 (Interior of a set). E◦ =
⋃
{V : V ⊆ E ∧ V ∈ τ (Rn)}

Definition 26 ( Closure of a set ). Ē = cl(E) = ∩{V : E ⊆ V ∧ V ∈ F (Rn)} ,
where F (Rn) is family of closed sets.

Definition 27 (Boundary). ∂E = {x ∈ Rn | ∀ε Bε(x) ∩ E 6= ∅ ∧ Bε(x) ∩ Ec 6= ∅}

Lemma 8. • E◦ ⊆ E ⊆ Ē

• E◦ = E iff E is open

• Ē = E iff E is closed

• ∂E = Ē/E◦

Definition 28 (Topological space). (X, τ)).

1. ∅, X ∈ τ

2. if {vα} ∈ τ ⇒
⋃
α∈I vα ∈ τ any collections

3. if {vα} ∈ τ ⇒
⋂
α∈I vα ∈ τ finite

Definition 29 (Connected set X). #U,V ∈τU ∪ V = X ∧ U ∩ V = ∅

Definition 30 (Complete set X). Every Cauchy sequence of points in X has a
limit that is also in X

Metric generating completeness not topology is important (we skip metric here)

Definition 31 (Open covering). of E is a collection of sets {Vα}α∈A such that
each Vα is open and

E ⊆
⋃
α∈A

Vα

Definition 32 (Compactness). . E ⊆
⋃
α∈I vαα ∈ τ.E is compact if for every

open covering of E it has always finite subcover.
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Lemma 9. Each metric generating topology of compact space is complete. Every
complete and totally bounded space is compact.

Theorem 2 (Heine-Borel). E ⊆ Rn is compact ⇐⇒ E closed and bounded.

Lemma 10. (∃ of convergent subsequence). If E ⊆ Rn is compact, {xn} ⊆ E ⇒
∃xnk

xnk
→ x

Definition 33 (Continuity in topological space). .

f ∈ C0 on X ⇐⇒ ∀V ∈τ(X)f
−1(V ) ∈ τ (⇐⇒ ∀U∈F(x)f

−1(U) ∈ F)

Definition 34 (Continuity at a point). f : Φ → X is continuous at Θ ⇐⇒
∀openV⊆X:f(Θ)∈V ∃openU⊆ΦΘ ∈ U

3.4 Continuity and Convergence

3.4.1 Sequences

Definition 35 (Convergence ).

lim
n→∞

xn → x⇐⇒ ∀µ∃N∀n≥N |xn − x| < ε

divergent sequence: (xn → ±∞)⇐⇒ ∀µ∃N∀n≥Nxn > µ (xn < µ)

Lemma 11 (Uniqueness of Limits). A sequence in R can have at most one limit.

Lemma 12. A convergent sequence of real numbers is bounded (but not conversely).

Theorem 3 (Squeeze Theorem). aka the between theorem aka the sandwich the-
orem. Suppose {xn} , {yn} , {zn} are sequences of real numbers s.t.

xn ≤ yn ≤ zn ∀n ∈ N

and lim (xn) = lim (zn), then yn is convergent and

lim (xn) = lim (yn) = lim (zn)

Lemma 13. Every convergent sequence is bounded.

Definition 36 (Monotone sequence). {an} is increasing if

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ . . .

is decreasing if
a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ . . .

is monotone if either increasing or decreasing.

Theorem 4 (Monotone convergence). If xn is monotone and bounded ⇒ xn →
x < +∞

Definition 37 (Subsequence). let n1 < n2 < · · · < nk < . . . be a strictly increas-
ing sequence from N. The sequence {ank

} given by {an1 , an2 . . . , ank
, . . .} is called a

subsequence of {an}

10



Lemma 14. If a sequence {an} converges to a real number a, then any subsequence
of {an} converges to a.

Theorem 5 (W.Sierpinski). If {an} is a sequence of real numbers, then there
exists a subsequence of {an} that is monotone.

Theorem 6 (Bolzano-Weierstrass). Every bounded sequence has convergent sub-
sequence

Definition 38 (Cauchy sequence). . {xn} is Cauchy ⇐⇒

∀ε>0∃N∀n,m≥N | xn − xm |< ε

Lemma 15. If xn → x⇒ {xn} is Cauchy

Theorem 7 (Cauchy Convergence Criterion on R). A sequence of real numbers
is convergent if and only if it is a Cauchy sequence.

Definition 39 (limsup, liminf). .

lim supxn = limn→∞
(
supk≥n xk

)
lim inf xn = limn→∞ (infk≥n xk)

Lemma 16. xn → x⇐⇒ lim supxn = fxn

3.4.2 Functions

Definition 40 (Limit of function).

lim
x→a

f(x) = y ⇐⇒ ∀ε>0∃δ>0|x− a| < δ ⇒ |f(x)− f(y)| < ε

Definition 41 (Right/left limits). .
Right

y = lim
x→a+

f(x)⇐⇒ ∀ε>0∃ρ>0a < x < a+ ρ⇒ |f(x)− y| < ε

Left
z = lim

x→a−
f(x)⇐⇒ ∀ε>0∃ρ>0a− ρ < x < a⇒ |f(x)− z| < ε

Definition 42 (Continuity). . f : E → R is continuous at x ∈ E ⇐⇒

xn → x⇒ f (xn)→ f(x)

∀ε>0 ∃δ>0 ||xn − x|| < δ ⇒ ||f(xn)− f(x)|| < ε

f is continuous on X if f is continuous at every point y ∈ X

Lemma 17. Equivalently

• f is continuous at y ∈ X if and only if for every open ball J of center f(y)
there exists an open ball B of center y such that f(B ∩X) ⊆ J

• f is continuous at y ∈ X if and only if for every ε > 0 there exists δ > 0 such
that ‖x− y‖ < δ and x ∈ X =⇒ |f(x)− f(y)| < ε

11



Lemma 18 (Sequentially continuous function). f is continuous at y ∈ X if
and only if f is sequentially continuous at y, that is, for every sequence (xn)n∈N ⊆ X
such that xn → y, we have that

f (xn)→ f(y)

Theorem 8. Let E ⊆ R, f, g and h : E → R, let c ∈ R be a cluster point of
E, b ∈ R. If f(x) and g(x) converge as x→ c, then

1. limx→c(f + g)(x) = limx→c f(x) + limx→c g(x)

2. limx→c(fg)(x) = (limx→c f(x)) (limx→c g(x))

3. limx→c(αf)(x) = α (limx→c f(x))

4. limx→c(f/g)(x) = limx→c f(x)/ limx→c g(x) (with g(x) ’s limit not equal to 0.)

5. If a ≤ f(x) ≤ b for all x ∈ E\c, then a ≤ limx→c f(x) ≤ b

6. (Squeeze Theorem) If g(x) ≤ h(x) ≤ g(x) for all x ∈ E\{c} and limx→c f(x) =
limx→c g(x) = y then limx→c h(x) = y

7. If |g(x)| < M for all x ∈ E\{c} and f(x)→ 0 as x→ c then limx→c f(x)g(x) =
0

Lemma 19 (Boundedness Lemma). Let I be a closed bounded interval and let
f : I → R be continuous on I. Then f is bounded on I.

Theorem 9 (Extreme value theorem - Weierstrass). . If H ⊆ Rn compact,
f : H →, f ∈ C0 then

∃y, x f(y) = sup
x∈H

f(x) ∧ f(x) = inf
x∈H

f(x)

Theorem 10 (Intermediate value theorem, Darboux). f : I → R, a, b ∈
I, a < b, y0 ∈ (f(a), f(b))⇒ ∃x0∈(a,b)f (x0) = y0

Lemma 20. Let f : I → R be continuous on I.

a If I is a closed bounded interval, then the set f(I) := {f(x) : x ∈ I} is a closed
bounded interval.

b If I is an interval, then the set f(I) is an interval.

c If K is a compact subset of R, then f(K) is compact.

Definition 43 (Uniform continuity). ∀x1,x2∀ε>0∃ρ>0 |x1 − x2| < ρ ⇒ ‖f (x1)−
f (x2) |< ε then f (xn) is Cauchy

Theorem 11 (Uniform Continuity Theorem). I compact interval and f : I →
R be continuous on I. Then f is uniformly continuous on I.

Theorem 12 (Easy version of Tietze). A function f is uniformly continuous on
the interval (a, b) if and only if it can be defined at the endpoints a and b such that
the extended function is continuous on [a, b]
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Definition 44 (Pointwise convergence).

∀xf(x) = lim
n→∞

fn(x)⇐⇒ ∀x∀ε>0∃N∀n>N |fn(x)− f(x)| < ε

Definition 45 (Uniform convergence ⇒ ).

∀ε>0∃N∀n>N∀x∈E |fn(x)− f(x)| < ε⇐⇒ ∀ε>0∃N∀m,n>N∀x∈E |fn(x)− fm(x)| < ε

Theorem 13 (Lebesgue Dominated convergence theorem).

∀n |fn| < M, fn ⇒ f ⇒ f < M

Definition 46. f is weakly increasing (or non-decreasing) on X if for all x
and y in X

x ≤ y =⇒ f(x) ≤ f(y)

Definition 47. f is increasing on X if for all x and y in X

x� y =⇒ f(x) < f(y)

Definition 48. f is strictly increasing on X if for all x and y in X,

x < y =⇒ f(x) < f(y)

Almost all properties above hold for Rn

3.5 Differentiability

Definition 49 (Partial Derivative). : Denote a function f : {x1}× · · ·×{xj1}×
[a, b]× {xj+t} × · · · × {xn} → R as

g(t) := f (x1, . . . , xj1 , t, xj+1, xn) , t ∈ [a, b]

If g is differentiable at some t0 ∈ [a, b], then the partial derivative of f at
(x1, . . . , xj−1, t0, xj+1, . . . , xn) with respect to xj is defined by

fj (x1, . . . , xj−1, t0, xj+1, xm) =
∂f

∂xj
(x1, . . . , xj−1, t0, xt+1, . . . , tm)

The partial derivative exists at a if and only if

∂f

∂xj
(a) = lim

h→0

f (a+ hej)− f(a)

h

Similarly, for a vector-valued functions, the partial derivative at a is defined as

∂f

∂xj
(a) =

(
∂f1

∂xj
(a), . . . ,

∂fm
∂xj

(a)

)
Higher-order partial derivatives are defined by iteration. For example, a second
partial derivative respect to xj and xk is defined by

fj,k :=
∂2f

∂xk∂xj
:=

∂

∂xk

(
∂f

∂xj

)
13



Definition 50. X ⊆ Rn is an open set, f is a function from X to R and x ∈ X

∇f(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xh
(x), . . . ,

∂f

∂xn
(x)

)
denotes the gradient of f at x,

Definition 51 (Frechet Differentiable function). f is differentiable at y ∈ X if
1. all the partial derivatives of f at y exist,
2. there exists a function Ey defined in some open ball B(0, ε) ⊆ Rn such that for
every u ∈ B(0, ε)

f(y + u) = f(y) +∇f(y) · u+ ‖u‖Ey(u) where lim
u→0

Ey(u) = 0

f is differentiable on X if f is differentiable at every point y ∈ X.

Lemma 21. If f is differentiable at y, then f is continuous at y

Definition 52 (Gateaux differentiable- Directional derivative). Let v ∈ Rn, v 6=
0. The directional derivative Dvf(y) of f at y ∈ X in the direction v is defined as

lim
t→0+

f(y + tv)− f(y)

t

if this limit exists and it is finite.

Lemma 22 (Differentiable function/Directional derivative). If f is differen-
tiable at y ∈ X, then for every v ∈ Rn with v 6= 0

Dvf(y) = ∇f(y) · v

Theorem 14. Let I ⊂ R, c ∈ I, and let f, g : I → R be functions that are differen-
tiable at c, α ∈ R. Then the following equation are also differentiable at c

1. αf , with (αf)′ = αf ′

2. f + g, with (f + g)′(c) = f ′(c) + g′(c)

3. fn(c), with (fn)′ (c) = n(f(c))n−1f ′(c)

4. (Product Rule) fg, with (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

5. (Quotient Rule) f/g, with (if g(c) 6= 0 )(
f

g

)′
(c) =

f ′(c)g(c)− f(c)g′(c)

(g(c))2

Theorem 15 (Carathéodory’s Theorem). Let f : I → R, c ∈ I. Then f is
differentiable at c if and only if there exists a function ϕ on I that is continuous at
c and satisfies

f(x)− f(c) = ϕ(x)(x− c)

for x ∈ I In this case, we have ϕ(c) = f ′(c)

14



Theorem 16 (Chain Rule). Let I, J be intervals in R, let g : I → R and f : J →
R be functions such that f(J) ⊆ I, and let c ∈ J. If f is differentiable at c and if g
is differentiable at f(c), then the composite function g ◦ f is differentiable at c and
(11)

(g ◦ f)′(c) = g′(f(c)) · f ′(c)

Theorem 17 (Interior Extremum Theorem). Let c be an interior point of the
interval I at which f : I → R has a relative extremum. If the derivative of f at c
exists, then f ′(c) = 0

Theorem 18 (Roll’s Theorem). Suppose a continuous function f : [a, b]→ R has
derivative f ′ exists at every point in (a, b) and f(a) = f(b) = 0. Then there exists
at least one point c ∈ (a, b) s.t. f ′(c) = 0

Theorem 19 (L’Hospital’s Rules). Let −∞ ≤ a < b ≤ ∞, and let f, g differen-
tiable on (a, b) and g′ 6= 0∀x ∈ (a, b).

• If
lim
x→a+

f(x) = 0 = lim
x→a+

g(x)

then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

• If limx→a+ g(x) = ±∞, then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

Left-hand limits and two-sided limits are treated in exactly the same way.

Definition 53. D2f(x) = H(x) denotes the Hessian matrix of f at x

Definition 54. X ⊆ Rn is an open set, g := (g1, . . . , gj, . . . , gm) is a mapping from
X to Rm and x ∈ X

Jg(x) :=



∂g1
∂x1

(x) . . . ∂g1
∂xh

(x) . . .
∂g1
∂xn

(x)
...

...
...

∂gj
∂x1

(x) . . .
∂gj
∂xh

(x) . . .
∂gj
∂xn

(x)
...

...
...

∂gm
∂x1

(x) · · · ∂gm
∂xh

(x) . . .
∂gm
∂xn

(x)


m×n

=


∇g1(x)

...
∇gj(x)

...
∇gm(x)


m×n

denotes the Jacobian matrix of g at x.
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3.6 Powerful theorems of analysis

Theorem 20 (Inverse Function Theorem). Let V be open in Rn and f : V → Rn

be C1 on V . If ∆f (a) 6= 0 for some a ∈ V, then there exists an open set W containing
a such that

• f is 1− 1 on W

• f−1 is C1 on f(W ), and

• for each y ∈ f(W )

D
(
f−1
)

(y) =
[
Df

(
f−1(y)

)]−1

Notation: [·]−1 represents matrix inversion, ∆f (a) = det(Df(a)) (the Jacobian
of f at a )

Theorem 21 (Mean Value Theorem on Rn). Let V ⊆ Rn be open and convex,
and let f : V → R be a function that is differentiable everywhere on V . Then, for
any a, b ∈ V, there is λ ∈ (0, 1) such that

f(b)− f(a) = Df((1− λ)a+ λb) · (b− a)

Notation: L(a, b) := {(1− t)a + tb : t ∈ [0, 1)} is called line segment

Theorem 22 (Taylor Theorem on Rn). Let p ∈ N, let V be open in Rn, let
x, a ∈ V, and suppose that f : V → R. If the pth total differential of f exists on V
and L(x; a) ⊆ V , then there is a point c ∈ L(x, a) , h := x− a such that

f(x) = f(a) +

p−1∑
k=1

1

k!
D(k)f(a;h) +

1

p!
D(p)f(c, h)

Theorem 23 (Implicit Function Theorem). Let F : S ⊆ Rm × Rn → Rn be a
C1 function, where S is open. Let (x∗, y∗) be a point in S such that DFy (x∗, y∗) is
invertible, and let F (x∗, y∗) = c. Then, there is a neighborhood U ⊆ Rm of x∗ and
a C1 function g : U → Rn such that

• (x, g(x)) ∈ S,∀x ∈ U

• g (x∗) = y∗

• F (x, g(x)) ≡ c,∀x ∈ U

• Dg(x) = (DFy(x, y))−1 ·DFx(x, y)

3.7 Concavity and quasi-concavity

In this section, we assume that C is a convex subset of Rn and f is a function from
C to R.

Definition 55 (Convex set). A set C is convex⇐⇒ ∀x,y∈C∀λ∈[0,1]λx+(1− λ)y ∈ C

Definition 56 (Convex combination). Let {xi}mi=1 ⊆ Rn, {λi}mi=1 ⊆ R+,
∑
λi =

1. The vector
∑
λixi = 1 is called a convex combination of {xi} .
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Lemma 23. C is convex ⇐⇒ C contains all convex combinations of its elements.

Definition 57 (Hyperplane). H ⊆ Rn is hyperplane⇐⇒ ∃β∈R,b∈RnH = {x ∈ Rn : x · b = β}

Lemma 24 (Hyperplane generates two halfspaces). {x ∈ Rn : x · b ≤ β} and
{x ∈ Rn : x · b ≥ β}

Definition 58 (Convex hull ). . Let Co = ∩{C : E ⊆ C,C convex }.
Note Co =

{
x ∈ Rn : ∃{xi}⊆E∃{λi}⊆R:

∑
λi=1x =

∑
λixi

}
Definition 59 (Simplex). . A set S ⊆ Rn is m -dimensional simplex ⇐⇒ S =
{(b0, . . . , bm) ∈ Rm : bi affinely independent }

Theorem 24. If ∀iCi convex following sets are convex

• C =
⋂
Ci

• C1 + a

• C1 + C2 is convex

• C = {x ∈ Rn : x · b ≤ β}

• if f is quasi concave function, then C = {x ∈ Rn : f(x) ≤ β} is convex

Theorem 25 (Separating hyperplane theorem). . Let C1 ⊆ Rn, C2 ⊆ Rn.
H = {x ∈ Rn : x · b = β} is separating hyperplane of C1&C2 ⇐⇒

∀x∈C1x · b ≤ β ∀y∈C2y · b ≥ β

Separation is strong if at least one is < , >)
”⇐⇒ ” part of theorem is true when

• ri (C1) ∩ ri (C2) = ∅

• ri(A) = {x ∈ A : B(x, ε) ∩ aff(A) ⊆ A}

• aff(A) = {
∑
αixi : xi ∈ A,

∑
αi = 1}

Conditions for ”⇒ ” separating hyperplane theorem: for all C1, C2 non empty,
convex, x ∈ Rn

• x /∈ C1 ⇒ H(b, β) separates strongly x&C1

• C1 ∩ C2 = ∅ ⇒ H(b, β) separates C1&C2

• C1 open ⇒ H(b, β) separates strongly C1&C2

• C1, C2 closed, C1 compact⇒ H(b, β) separates strongly C1&C2

Definition 60. (Support). The support function S(· | C) of convex set C ⊆ Rn is
defined as:

S(x, y) = sup
y∈C

x · y
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Definition 61. (Concave function) f is concave if for all t ∈ [0, 1] and for all
x and y in C,

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

Lemma 25. f is concave if and only if the set

{(x, α) ∈ C × R : f(x) ≥ α}

is a convex subset of Rn+1. The set above is called hypograph of f

Lemma 26. (Jensen’s Inequality) f is concave if and only if f (λ1x1 + . . .+ λkxk) ≥
λ1f (x1) + . . .+ λkf (xk) for x1, . . . , xk ∈ Γ and λi ≥ 0 and

∑
λ1 = 1

Lemma 27. C is open and f is differentiable on C.f is concave if and only if for
all x and y in C,

f(x) ≤ f(y) +∇f(y) · (x− y)

Lemma 28. C is open and f is twice continuously differentiableon C . f is concave
if and only if for all x ∈ C the Hessian matrix Hf(x) is negative semidefinite, that
is, for all x ∈ C

vHf(x)vT ≤ 0,∀v ∈ Rn

Definition 62 (Strictly concave function). f is strictly concave if for all t ∈]0, 1[
and for all x and y in C with x 6= y

f(tx+ (1− t)y) > tf(x) + (1− t)f(y)

Lemma 29. C is open and f is differentiable on C.f is strictly concave if and only
if for all x and y in C with x 6= y,

f(x) < f(y) +∇f(y) · (x− y)

Lemma 30. C is open and f is twice continuously differentiable on C. If for all
x ∈ C the Hessian matrix Hf(x) is negative definite, that is, for all x ∈ C

vHf(x)vT < 0,∀v ∈ Rn, v 6= 0

then f is strictly concave

Lemma 31. Monotone transformation If f quasi convex, g monotone, nonde-
creasing, then g ◦ f is quasi-convex.

Definition 63 (Quasi-concave function). f is quasi-concave if and only if for
all α ∈ R the set

{x ∈ C : f(x) ≥ α}
is a convex subset of Rn. The set above is called upper contour set of f at α.

Lemma 32. f is quasi-concave if and only if for all t ∈ [0, 1] and for all x and y
in C,

f(tx+ (1− t)y) ≥ min{f(x), f(y)}

Lemma 33. C is open and f is differentiable on C.f is quasiconcave if and only if
for all x and y in C,

f(x) ≥ f(y) =⇒ ∇f(y) · (x− y) ≥ 0
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Lemma 34. C is open and f is differentiable on C. If f is quasiconcave and
∇f(x) 6= 0 for all x ∈ C, then for all x and y in C with x 6= y,

f(x) > f(y) =⇒ ∇f(y) · (x− y) > 0

Definition 64. (Kernel) Kerg(x) := {v ∈ Rn, v 6= 0 and ∇g(x) · v = 0}

Lemma 35. C is open and f is twice continuously differentiable on C. If f is quasi-
concave, then for all x ∈ C the Hessian matrix Hf(x) is negative semidefinite on
Ker∇f(x), that is, for all x ∈ C

v ∈ Rn and ∇f(x) · v = 0 =⇒ vHf(x)vT ≤ 0

Definition 65. (Strictly quasi-concave function) f is strictly quasi-concave if
and only if for all t ∈]0, 1[ and for all x and y in C with x 6= y,

f(tx+ (1− t)y) > min{f(x), f(y)}

Is concave function differentiable? almost everywhere. Moreover derivative is
continuous a.s.

Lemma 36. If f concave, |f(x)| ≤ M on open neighborhood of convex X, then f
continuous.

Lemma 37. C is open and f is differentiable on C.

1. If for all x and y in C with x 6= y,

f(x) ≥ f(y) =⇒ ∇f(y) · (x− y) > 0

then f is strictly quasi-concave

2. If f is strictly quasi-concave and ∇f(x) 6= 0 for all x ∈ C, then for all x, y ∈ C,
x 6= y

f(x) ≥ f(y) =⇒ ∇f(y) · (x− y) > 0

Lemma 38. C is open and f is twice continuously differentiable on C. If for all
x ∈ C the Hessian matrix Hf(x) is negative definite on Ker∇f(x), that is, for all
x ∈ C

v ∈ Ker∇f(x), =⇒ vHf(x)vT < 0

then f is strictly quasi-concave

Lemma 39. We remark that

f linear or affine ⇒ f concave ⇐ f strictly concave

↓

f quasi-concave ⇐ f strictly quasi-concave

We remind the definitions and some properties of negative definite/semidefinite ma-
trices. Let H be a n× n symmetric matrix.

Definition 66. (nsd, nd matrix)
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• H is negative semidefinite (nsd) if vHvT ≤ 0 for all v ∈ Rn

• H is negative definite (nd) if vHvT < 0 for all v ∈ Rn with v 6= 0

Theorem 26. (Eigen values and definitness)

1. H has n real eigenvalues. We denote λ1, . . . , λn the eigenvalues of H.

2. H is negative semidefinite if and only λi ≤ 0 for every i = 1, ..., n

3. H is negative definite if and only λi < 0 for every i = 1, ..., n

Theorem 27. (n = 2 and definitness of matrix)

1. If H is negative semidefinite, then tr(H) ≤ 0 and det(H) ≥ 0 if n is even,
det(H) ≤ 0 if n is odd

2. If H is negative definite, then tr(H) < 0 and det(H) > 0 if n is even, det(H) <
0 if n is odd

We remark that if n = 2, then the conditions stated in the proposition above also
are sufficient conditions, that is

1. H is negative semidefinite if and only if tr(H) ≤ 0 and det(H) ≥ 0.

2. H is negative definite if and only if tr(H) < 0 and det(H) > 0.

4 Optimization

4.1 Karush-Kuhn-Tucker Conditions

In this section, we assume that C ⊆ Rn is convex and open
- the following functions f and gj with j = 1, . . . ,m are differentiable on C

f : x ∈ C ⊆ Rn −→ f(x) ∈ R and
gj : x ∈ C ⊆ Rn −→ gj(x) ∈ R, ∀j = 1, . . . ,m

Maximization problem
max
x∈C

f(x)

subject to gj(x) ≥ 0,∀j = 1, . . . ,m

where f is the objective function, and gj with j = 1, . . . ,m are the constraint
functions.

The Karush-Kuhn-Tucker conditions associated with problem are given below
∇f(x) +

∑m
j=1 λj∇gj(x) = 0

λjgj(x) = 0,∀j = 1, . . . ,m
gj(x) ≥ 0,∀j = 1, . . . ,m
λj ≥ 0, ∀j = 1, . . . ,m

where for every j = 1, . . . ,m, λj ∈ R is called Lagrange multiplier associated with
the inequality constraint gj
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Definition 67. Let x∗ ∈ C, we say that the constraint j is binding at x∗ if f
gj (x∗) = 0. We denote

1. B (x∗) the set of all binding constraints at x∗, that is

B (x∗) := {j = 1, . . . ,m : gj (x∗) = 0}

2. m∗ ≤ m the number of elements of B (x∗) and

3. g∗ := (gj)j∈B(x∗) the following mapping

g∗ : x ∈ C ⊆ Rn −→ g∗(x) = (gj(x))j∈B(x∗) ∈ Rm∗

Theorem 28 (Karush-Kuhn-Tucker necessary conditions). Let x∗ be a solu-
tion to problem above. Assume that one of the following conditions is satisfied.

1. For all j = 1, . . . ,m, gj is a linear or affine function.

2. Slater’s Condition :

for all j = 1, . . . ,m, gj is a concave function or gj is a quasiconcave function
with ∇gj(x) 6= 0 for all x ∈ C, and there exists y ∈ C such that gj(y) > 0 for all
j = 1, . . . ,m

3. Rank Condition : rank Jg∗ (x∗) = m∗ ≤ n Then, there exists λ∗ =
(λ∗1, . . . , λ

∗
m) ∈ Rm

+ such that (x∗, λ∗) satisfies the Karush-Kuhn-Tucker Conditions .

Theorem 29 (Karush-Kuhn-Tucker sufficient conditions). Suppose that there
exists λ∗ =

(
λ∗1, . . . , λ

∗
j , . . . , λ

∗
m

)
∈ Rm

+ such that (x∗, λ∗) ∈ C × Rm
+

satisfies the Karush-Kuhn-Tucker Conditions (2). Assume that

1. f is a concave function or f is a quasi-concave function with ∇f(x) 6= 0
for all x ∈ C, and

2. gj is a quasi-concave function for all j = 1, . . . ,m

Then, x∗ is a solution to problem.

5 Correspondences

Let Θ ⊆ Rn, X ⊆ Rn.

Definition 68. A correspondence Γ : Θ⇒ X is a map s.t. Γ(Θ) ⊆ X.
(
Γ : Θ→ 2X

)
Definition 69 (Graph of correspondence). . Gr(Γ) = {(θ, x) : θ ∈ Θ, x ∈ Γ(θ)}

Definition 70. (Properties of correspondences).

1. not empty valued if Γ(θ) 6= ∅ ∀θ
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2. single valued if |Γ(θ)| = 1 ∀θ

3. closed valued if Γ(θ) is closed set ∀θ

4. compact valued if Γ(θ) is compact set ∀θ

5. convex valued if Γ(θ) is convex set ∀θ

6. closed (graph) if Gr(Γ) is closed subset of E×X

7. convex (graph) if Gr(Γ) is convex on Θ×X

Lemma 40. Gr(Γ) is closed graph ⇐⇒ ∀θ:θn→θ∀xn→x : xn ∈ Γ (θn)⇒ x ∈ Γ (θ)

Lemma 41. Gr(Γ) is convex graph ⇐⇒ ∀θ, θ′, x ∈ Γ(θ), x′ ∈ Γ (θ′) it holds that
λx+ (1− λ)x′ ∈ Γ (θλ+ (1− λ)θ′)∀x∈[0,1]

Lemma 42. Γ : Θ ⇒ X has closed graph ⇒ it is closed valued. If X is compact,
than Γ is also compact valued.

Definition 71 (Upper Hemi-Continuity). Let Γ : Θ⇒ X be a correspondence.

• Γ is said to be upper hemi-continuous (uhc) at a point θ ∈ Θ if and only
if for all open sets V ⊆ X such that Γ(θ) ⊆ V, there exists an open set U ⊆ Θ
such that θ ∈ U and for all θ′ ∈ U it holds that Γ (θ′) ⊆ V

• A compact valued correspondence Γ : Θ ⇒ X is u.h.c. at θ ∈ Θ if and
only if for every {θn} ⊂ Θ such that θn → θ and every sequence {xn} ⊂ X
such that xn ∈ Γ (θn) there exits a convergent subsequence {xnk

} such that
xnk
→ x ∈ Γ(θ)

∀θn→θ∀xn∈Γ(θn)∃{xnk}xnk
→ x ∈ Γ(θ)

Definition 72 (Lower Hemi-Continuity). . Let Γ : Θ⇒ X be a correspondence.

• Γ is said to be lower hemi-continuous (1hc) at a point θ ∈ Θ if and only
if for all open sets V ⊆ X such that Γ(θ) ∩ V 6= ∅, there exists an open set
U ⊆ Θ such that θ ∈ U and for all θ′ ∈ U it holds that Γ (θ′) ∩ V 6= ∅

• A correspondence Γ : Θ ⇒ X is l.h.c. at θ ∈ Θ if for all x ∈ Γ(θ) and all
sequences {θn} ⊆ θ such that θn → θ there exits a sequence {xn} ⊆ X such
that xn ∈ Γ (θn) and xn → x

∀θn→θ∀x∈Γ(θ)∃xn∈Γ(θn)xn → x

Definition 73 (Continuity). Γ is said to be continuous at a point θ ∈ Θ if it is
both UHC an LHC.

Lemma 43 (u.h.c and Closed graph). Let Γ : Θ ⇒ X. If Γ is u.h.c, then Γ is
closed (has a closed graph).

Lemma 44 (Closed graph and u.h.c.). Let Γ : Θ ⇒ X. If X is compact and Γ
is closed (has a closed graph), then Γ is u.h.c.
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Theorem 30 (Berge (1961) of Maximum). Let Θ ⊆ Rm and X ⊆ Rn, let
f : Θ × X → R be a continuous function and Γ : Θ ⇒ X a nonempty,
compact valued, continuous correspondence. Define:

v(θ) = max
x∈Γ(θ)

f(x, θ) G(θ) = {x ∈ Γ(θ) | f(x, θ) = v(θ)}

Then

• v : Θ→ X is continuous

• G : Θ⇒ X is nonempty and compact valued, and UHC

Proof. The proof is divided in three parts. First it is proven that G is nonempty
and compact valued, then that it is u.h.c. and finally that v is continuous.

1. G is nonempty valued and compact valued.

• Let θ ∈ Θ, by hypothesis Γ(θ) is compact and nonempty. since f(·, θ) is
continuous a maximum is attained on Γ(θ) by the extreme value theorem
(Weierstrass). This proves that G(θ) is nonempty for arbitrary θ.

• Let θ ∈ Θ, by hypothesis Γ(θ) is compact and nonempty. since G(θ) ⊆
Γ(θ) it follows that G(θ) is bounded, it is left to show closedness to estab-
lish compactness. Let xn → x and xn ∈ G(θ) for all n. Clearly xn ∈ Γ(θ)
for all n, since Γ is closed valued it follows that x ∈ Γ(θ), so its feasible.
By definition of G we have v(θ) = f (xn, θ) for all n, since f is continuous
we get v(θ) = lim f (xn, θ) = f(x, θ), then by definition x ∈ G(θ), which
proves closedness.

2. G is u.h.c. Consider θ ∈ Θ, a sequence in Θ such that θn → θ and a sequence
in X such that xn ∈ G (θn) for all n. Note that xn ∈ Γ (θn) . since Γ is u.h.c.
there exists a subsequence xnk

→ x ∈ Γ(θ) Now consider z ∈ Γ(θ). since Γ
is l.h.c. there exists a sequence in X such that zn ∈ Γ (θn) and zn → z. In
particular the subsequence {znk

} also converges to z since xn ∈ G (θn) and
zn ∈ Γ (θn) it follows that f (xn, θn) ≥ f (zn, θn) . since f is continuous in both
arguments we get by taking limits: f(x, θ) ≥ f(z, θ). since the inequality holds
for arbitrary z ∈ Γ(θ) we get the result: x ∈ G(θ). This proves u.h.c.

3. v is continuous. Let θ ∈ Θ and θn → θ an arbitrary sequence converging to
θ. Consider an arbitrary sequence in X such that xn ∈ G (θn) for all n. Let
v̄ = lim sup v (θn) . By proposition 2.9 there is a subsequence {θnk

} such that
v (θnk

) → v̄. since G is u.h.c. there exists a subsequence of {xnk
} ( call it

{xnkl
}) converging to a point x ∈ G(θ). Then

v̄ = lim v (θkl) = lim f (xkl , θkl) = f(x, θ) = v(θ)

where the second equality follows from xkl ∈ G (θkl) , the third one from f being
continuous and the final one from x ∈ G(θ). Let v = lim inf v (θn) and by a
similar argument we get v(θ) = v since v(θ) = lim inf v (θn) = lim sup v (θn) we
get v(θ) = lim v (θn) for arbitrary {θn} converging to θ. This proves continuity.
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Theorem 31 (ToM under convexity). Let Θ ⊆ Rm and X ⊆ Rn, let f : Θ×X →
R be a continuous function and Γ : Θ⇒ X a nonempty, compact valued, continuous
correspondence. Define:

v(θ) = max
x∈Γ(θ)

f(x, θ) G(θ) = {x ∈ Γ(θ) | f(x, θ) = v(θ)}

a If f(·, θ) is concave in x for all θ and Γ is convex valued then G is convex
valued.

b If f(·, θ) is strictly concave in x for all θ and Γ is convex valued then G is
single valued, hence a continuous function.

c If f is concave on Θ×X and Γ has a convex graph then v is concave and G
is convex valued.

d If f is strictly concave on Θ ×X and Γ has a convex graph then v is strictly
concave and G is single valued, hence a continuous function.

Theorem 32 (ToM under quasi-convexity). . Let Θ ⊆ Rm and X ⊆ Rn, let
f : Θ× X → R be a continuous function and Γ : Θ ⇒ X a nonempty, compact
valued, continuous correspondence. Define:

v(θ) = max
x∈Γ(θ)

f(x, θ) G(θ) = {x ∈ Γ(θ) | f(x, θ) = v(θ)}

a If f(·, θ) is quasi-concave in x for all θ and Γ is convex valued then G is convex
valued.

b If f(·, θ) is strictly quasi-concave in x for all θ and Γ is convex valued then G
is single valued, hence a continuous function.

c If f is quasi-concave on Θ×X and Γ has a convex graph then v is quasi-concave
and G is quasi-convex valued.

d If f is strictly quasi-concave on Θ × X and Γ has a convex graph then v is
strictly quasi-concave and G is single valued, hence a continuous function.

5.1 Berge theorem applied to micro

One, useful, application of the material covered above is to determine properties of
the budget correspondence, that indicates the feasible consumption bundles for a
consumer given a price vector p and an endowment vector e. Suppose there are l
goods, and that the agent has a fixed endowment of each good given by the vector
e ∈ Rl

++, the price of the goods is a vector p ∈ ∆, where ∆ is the n -dimensional
open simplex. Define the budget set correspondence B(·, e) : ∆⇒ Rl

+by

B(p, e) =
{
x ∈ Rl

+ | p · x ≤ p · e
}

Theorem 33. B(·, e) is continuous on prices.

Proof. The claim is proved establishing u.h.c. and l.h.c. of B.
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1. B(·, e) is upper hemi-continuous on prices. Let p ∈ ∆, {pn} ⊆ ∆ with pn → p
and {xn} ⊆ Rl

+ a sequence such that xn ∈ B (pn, e) since pn → p ∈ ∆ there
exists a closed ball, C, around p such that C ⊆ ∆ and for n large enough
pn ∈ C. Let ξi = maxp∈C

p·e
pi

for i = 1, . . . , l. ξi is the maximum amount of

xi that can be bought in the neighborhood of p. Define ξ = max {ξi} + 1, it
is clear that for n large enough xn ∈ Bξ(0), then {xn} is a bounded sequence,
hence it admits a convergent subsequence xnk

→ x. since xnk
∈ B (pnk

, e) we
have: pnk

· xnk
≤ pnk

· e, since dot product is a continuous function taking
limits we have p · x ≤ p · e, which is x ∈ B(p, e), proving u.h.c. of B.

2. B(·, e) is lower hemi-continuous on prices. Let p ∈ ∆, {pn} ⊆ ∆ with pn → p

and x ∈ B(p, e). Define ηin = max
{

0, pn·x−pn·e
lpin

}
and let xn = x − ηn Clearly

xn ∈ B (pn, e) since either x ∈ B (pn, e) or

pn · xn = pn · x−
∑

pin

(
pn · x− pn · e

lpin

)
= pn · x− (pn · x− pn · e) = pn · e

then pn · xn ≤ pn · e Moreover xn → x, since x ∈ B(p, e) and pn → p it follows
that pn · x − pn · e → p · x − p · e ≤ 0, then ηn = max {0, pn · x− pn · e} → 0
which is xn → x. Then B is l.h.c.

3. Note that it wasn’t checked if xn ≥ 0 for all n. This is not guaranteed by the
construction above. With extra notation it can be guaranteed that xin ≥ 0.

The consumer problem is often laid out without explicit endowments of the
goods, instead the parameters are prices p ∈ Rl

++ and a nominal income level
I ∈ R+. The set of parameters is Θ = Rl

++ × R. The indirect utility function
and the Marshalian demand correspondence are:

v(p, I) = max
x∈B(p,I)

u(x) G(p, I) = {x ∈ B(p, I) | u(x) = v(p, I)}

where the budget set is given by the correspondence:

B(p, I) =
{
x ∈ Rl

+ | p · x ≤ I
}

I take as given that B is a nonempty, convex valued and continuous correspondence,
and that u is a continuous function.

Theorem 34. v and G have the following properties on Θ.

a v is a continuous function on Θ and G is a nonempty, compact valued, u.h.c.
correspondence.

b v is nondecreasing in I for fixed p and non-increasing in p for fixed I.

c v is jointly quasi-convex on (p, I).

d If u is (quasi) concave then v is (quasi) concave in I for fixed p.

e If u is (quasi) concave then G is a convex valued correspondence.

f If u is strictly (quasi) concave then G is a continuous function.
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5.2 Nash equilibrium in normal form games

Definition 74. A normal form game is formed by:

a A finite set of agents I = {1, . . . , N}. A generic player is denoted i and the
set of other players −i.

b For each player a finite action set Ai. Note A = ×Ai.

c For each player a payoff function ui : A→ R.

From the set of pure strategies of a player one can define the set of mixed strategies.
Si = ∆ (Ai) , a mixed strategy is a probability distribution over the set of possible
actions Ai. Formally:

Si = ∆ (Ai) =

{
si : Ai → [0, 1] |

∑
ai∈Ai

si (ai) = 1

}

Note that Si is convex and compact. In fact Si is the convex hull of Ai. If players
play mixed strategies they rank alternative strategies according to their expected
payoffs, the expected payoffs are given by function vi : Si × S−i → R which is:

vi (t, s−i) =
∑
ai∈Ai

t (ai)

 ∑
a−i∈A−i

∏
j 6=i

sj (aj)u
i (ai, a−i)

 =
∑
a∈A

((
t (ai)

∏
j 6=i

sj (aj)

)
ui(a)

)

In a game where players play simultaneously in a noncooperative manner they have
to answer optimally to a given strategy profile of the other players.

Definition 75 (The best response). of a player to s−i is given by:

BRi (si, s−i) = BRi(s) =
{
t ∈ Si | ∀r∈Si

ui (t, s−i) ≥ ui (r, s−i)
}

= t ∈ Siargmaxvi (t, s−i)

Note that BRi is the solution to the problem V (s) = maxt∈Si
vi (t, s−i) since Si is

a fixed set it is also a constant correspondence with argument s, a strategy profile.
It is then continuous as well as nonempty, compact and convex valued. Moreover vi

is continuous in s−i and constant in si by construction, then it is continuous in s.v
is also linear in t holding s−i constant, then it is concave. It follows that the ToM
under convexity applies, then the BR is a nonempty, compact and convex valued
and u.h.c. correspondence for each player.

Definition 76 (A Nash Equilibrium). is defined as a strategy profile s? ∈ S such
that s?i ∈ BRi (s

?) for all i. A way to think about it is to form a correspondence
with the cartesian product of the individual BR correspondences, this is BR : S → S
defined as:

BR(s) = ×BRi(s)

Note that BR is by construction a nonempty, compact and convex valued and
u.h.c. correspondence.

A NE is then a fixed point of the correspondence BR. The following theorem
will establish the existence of such fixed point.
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6 Fixed Point Theorems

Theorem 35. Brouwer’s Fixed Point Theorem – continuous function
Let S ⊆ Rn be nonempty, compact, and convex, and f : S → S be a continuous

function. Then f has (at least) a fixed point in S, i.e. ∃x∗ ∈ S : x∗ = f(x∗)

Theorem 36 ( Tarsky’s Fixed Point Theorem weakly increasing functions).
Let f : [0, 1]n → [0, 1]n, where [0, 1]n = [0, 1]× ...× [0, 1], an n-dimensional cube. If
f is nondecreasing, then f has a fixed point in [0, 1]n.

Theorem 37 (Kakutani’s Fixed Point Theorem u.h.c. correspondence).
Let S ⊆ Rn be nonempty, compact, and convex, and Γ : S ⇒ S be a nonempty,
convex-valued, and u.h.c. correspondence. Then Γ has a fixed point in S, i.e. ∃x∗ ∈
S : x∗ ∈ Γ(x∗)

Since S is compact, u.h.c. is equivalent to Γ having a closed graph.

Theorem 38. Fixed Point Theorem – l.h.c. correspondence
Let S ⊆ Rn be nonempty, compact, and convex, and Γ : S ⇒ S be a nonempty,

convex-valued, closed-valued, and l.h.c. correspondence. Then Γ has a fixed point in
S.

7 Comparative statics ala Topkis

Definition 77 (Meet and Joint). Given x, y ∈ Rn, the meet of x and y, denoted
x ∧ y, is

x ∧ y = (min {x1, y1} , · · · ,min {xn, yn})

The joint of x and y, denoted x ∨ y, is

x ∨ y = (max {x1, y2} , · · · ,max {xn, yn})

Definition 78 (Lattice). X ⊆ Rn is a lattice of Rn if ∀x, y ∈ X, x ∧ y ∈ X and
x ∨ y ∈ X

Remark: A budget set is generally not a lattice of Rn. More for lattice: we can
define compact, sup/inf on it:

Definition 79 (compact lattice). X ⊆ Rn is a compact lattice if X is a lattice
and X is compact under the Euclidean metric.

Definition 80. x∗ ∈ X is a greatest element of lattice X if x∗ ≥ x, ∀x ∈ X, x̂ ∈ X
is a least element of lattice X if x̂ ≤ x,∀x ∈ X

Definition 81. (Uniqueness of greatest and least element) Suppose X ⊆ Rn

is a non-empty, compact lattice. Then, X has a greatest element and a least element.

Definition 82 (Supermodular). f : S × Θ → R is supermodular in (x, θ) if
∀z = (x, θ) and

z′ = (x′, θ′) in S ×Θf(z) + f (z′) ≤ f (z ∨ z′) + f (z ∧ z′)
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Theorem 39 (Supermodularity). f : S ×Θ→ R is supermodular in (x, θ), then
for any fixed θ, f is supermodular inx, i.e.

f(x, θ) + f (x′, θ) ≤ f (x ∨ x′, θ) + f (x ∧ x′, θ))

Definition 83 (Increasing Differences). f : S × Θ → R satisfies increasing
differences in (x, θ) if ∀(x, θ), (x′, θ′) ∈ S ×Θ such that x ≥ x′ and θ ≥ θ′

f(x, θ)− f (x′, θ) ≥ f (x, θ′)− f (x′, θ′)

If the inequality is strict whenever x > x′ and θ < θ′, then f satisfies strictly
increasing differences in(x, θ)

Theorem 40 (Supermodularity vs. Increasing Differences). f : Z ⊆ Rn → R
is supermodular in z iff f has increasing return in z

Theorem 41 (Topkis’ Characterization Theorem). Let Z be an open lattice
of Rn. A C2 function h : Z → R is supermodular on Z iff ∀z ∈ Z

∂2h

∂zi∂zj
(z) ≥ 0, ∀i 6= j

7.1 Parametric Monotonicity

Now let’s consider the optimization problem:

max
x∈S

f(x; θ)

with

f ∗(θ) = max{f(x; θ) | x ∈ S}, D∗(θ) = argmax{f(x; θ) | x ∈ S}

A correspondence D∗(θ) is nondecreasing in θ if for every θ ≤ θ′

D∗(θ) ≤ D∗ (θ′)

Above inequality between sets means the strong set order: for every x ∈ D∗(θ) and
x′ ∈ D∗ (θ′), it holds x ∨ x′ ∈ D∗ (θ′) , x ∧ x′ ∈ D∗(θ)

Theorem 42 (Topkis’ Monotonicity Theorem). Let S be compact lattice of
Rn,Θ be a lattice of Rl, and f : S ×Θ→ R be a continuous function on S, for each
fixed θ. Suppose f satisfies increasing differences in (x, θ), and is supermodular in x
for each fixed θ. Then D∗ is nondecreasing in θ.

8 Dynamic Programming

This part is based on ’Recursive Methods in Economic Dynamics’ by Stokey, Lucas
and Prescott (SLP in short) chapter 3-4.
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8.1 Pointwise and Uniform Convergence

Definition 84. (Pointwise convergence) Let E ⊆ R nonempty. A sequence of
functions fn : E → R is said to converge pointwise on E if and only the limit
lim fn(x) = f(x) exists for all x ∈ E.

Definition 85. (Uniformly Convergence) Let E ⊆ R nonempty. A sequence of
functions fn : E → R is said to converge uniformly on E if and only the

∀ε > 0,∃N ∈ N, s.t.∀x ∈ E,∀n ≥ N, |fn(x)− f(x)| < ε

We write fn ⇒ f .

Definition 86 (Uniform norm). Let E ⊆ R, ϕ : E → R is a function, we say ϕ
is bounded on E if the set ϕ(E) is a bounded subset of R. If ϕ is bounded, we define
the uniform norm of ϕ on E by

‖ϕ‖E := sup{|ϕ(x)| : x ∈ E}

Note that it follows that ε > 0 then

‖ϕ‖E ≤ ε ⇐⇒ |ϕ(x)| ≤ ε ∀x ∈ E

Lemma 45. A sequence {fn} of bounded functions on E ⊆ R converges uniformly
on E to f if and only if ‖fn − f‖E → 0

Lemma 46. Suppose f is the limit of a bounded, uniformly convergence sequence
{fn}, then f is also bounded.

Theorem 43. (Cauchy Criterion for Uniform Convergence Let {fn} be a sequence
of bounded functions on E ⊆ R. Then this sequence converges uniformly on E to a
bounded function f if and only if for every ε > 0 there is a number N ∈ N s.t. for
all m,n ≥ N , then

‖fm − fn‖E ≤ ε

Theorem 44 (Interchange of Limit and Continuity). Let {fn} be a sequence
of continuous on a set A ⊆ R and suppose {fn} uniformly convergence to a function
f : A→ R. Then f is continuous on A

Theorem 45 (Interchange of Limit and Derivative). Let E ⊆ R be a bounded
interval, {fn} : E → R. Suppose (1) ∃x0 ∈ E s.t. {fn (x0)} (pointwisely) converges
48 (2) {f ′n} exists and converges uniformly on E to a function g Then {fn} converges
uniformly on E to a function f that has a derivative at every point on E and f ′ = g.
Or equivalently

lim
n→∞

f ′n(x) =
(

lim
n→∞

fn(x)
)′

Theorem 46 (Interchange of Limit and Integral). Let {fn} be a sequence
of function in R[a, b] and suppose {fn} converges uniformly on [a, b] to f. Then
f ⊂ R[a, b] and ∫ b

a

lim
n→∞

fn =

∫ b

a

f = lim
n→∞

∫ b

a

fn

29



Definition 87 (Metric Space). A metric space is a pair (s, ρ) of a set and a met-
ric (distance function) ρ : S × S → R s.t. for all x, y, z ∈ S

(1) ρ(x, y) ≥ 0, and ρ(x, y) = 0 ⇐⇒ x = y
(2) ρ(x, y) = ρ(y, x)
(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Definition 88 (Contraction). Let (S, ρ) be a metric space, and a function T :
S → S mapping S into itself. T is a contraction (with modulus β ) if and only if
there exists β ∈ (0, 1) s.t. for all x, y ∈ S

ρ(Tx, Ty) ≤ βρ(x, y)

The iterates of T are the mappings {T n} define by T 0(x) = x, T n(x) = T (T n−1(x)).

Definition 89 (Fixed point). x ∈ S is called a fixed point for T : S → S if
Tx = x.

Definition 90 (Space of bounded, continuous functions). By (C(X), || · ||sup)
we denote

C(X) = {f : X → R, f ∈ C0, ||f ||sup <∞}

with supremum norm ‖f‖∞ = supx∈X |f(x)|(with metric d(x, y) = ||x− y||sup)

1. By Lemma x pointwise convergence and uniformly convergence are equivalent
for the bounded function under sup-norm. (Hence in this metric space, we
don’t need to worry about the types of convergence, and all the good properties
about interchange follows.)

2. By Theorem y a sequence of bounded functions uniformly convergence to a
bounded function if and only if it is a Cauchy sequence. This implies the space
composed by bounded functions B(X) together with sup-norm is complete.
Here, we can also show the space related to C(X) is also complete:

Theorem 47. C(X) with sup-norm is a complete normed vector space.

Theorem 48 (Banach, Contraction Mapping Theorem). If (S, ρ) is a com-
plete metric space and T : S → S is a contraction mapping with modulus β, then

1. T has exactly one fixed point v in S

2. For any v0 ∈ S, ρ (T nv0, v) ≤ βnρ (v0, v) , n = 0, 1, 2, · · ·

Lemma 47. Let (S, ρ) be a complete metric space, and let T : S → S be a contrac-
tion mapping with fixed point v ∈ S. If S ′ is a closed subset of S and T (S ′) ⊂ S ′,
then v ∈ S ′. If in addition T (S ′) ⊂ S ′′ ⊂ S ′, then v ∈ S ′′

Lemma 48. (N-stage Contraction Theorem) Let (S, ρ) be a complete metric space,
let T : S → S, and suppose that for some integer N, TN : S → S is a contraction
mapping with modulus β. Then (a) T has exactly one fixed point on S, (b) for any
v0 ∈ S, ρ

(
T kNv0, v

)
≤ βkρ (v0, v) , k = 0, 1, 2, · · ·
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Theorem 49. (Blackwell’s sufficient conditions for a contraction) Let X ⊂ Rl, and
let B(X) be a space of bounded functions f : X → R, with the sup norm. Let
T : B(X) → B(X) be an operator satisfying 1. (Monotonicity) f, g ∈ B(X) and
f(x) ≤ g(x),∀x ∈ X, implies (Tf)(x) ≤ (Tg)(x),∀x ∈ X 2. (Discounting) there
exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + βa, ∀f ∈ B(X), a ≥ 0, x ∈ X

where (f +a) is a function defined by (f +a)(x) = f(x) +a Then T is a contraction
with modulus β.

Lemma (3.7). Let X ⊂ Rl and Y ⊂ Rn. Assume that the correspondence Γ : X →
Y is non-empty, compact- and convex-valued, and continuous, and let A be the graph
of Γ. Assume that the function f : A → R is continuous and that f(x, ·) is strictly
concave, for each x ∈ X. Define the function g : X → Y by

g(x) = arg max
y∈Γ(x)

f(x, y)

Then for each ε > 0 and x ∈ X, there exists δx > 0 such that

y ∈ Γ(x)and|f [x, g(x)]− f(x, y)| < δx ⇒ ‖g(x)− y‖ < ε

If X is compact, then δ > 0 can be chosen independently of x.

Theorem (3.8). Let X, Y,Γ and A be as defined in Lemma 3.7. Let {fn} be a
sequence of continuous (real-valued) functions on A; assume that for each n and
each x ∈ X, fn(x, ·) is strictly concave in its second argument. Assume that f has
the same properties and that fn → f uniformly (in the sup norm). Define the
functions gn and g by

gn(x) = arg max
y∈Γ(x)

fn(x, y), n = 1, 2, · · · g(x) = arg max
y∈Γ(x)

f(x, y)

Then gn → g pointwise. If X is compact, gn → g uniformly.

8.2 Certainty and Bounded returns

The problem to be studied in terms of infinite sequences is of the form (SP):

v? (x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1) s.t.xt+1 ∈ Γ (xt)

Corresponding to this problem is the following functional equation (FE):

v(x) = sup
y∈Γ(x)

{F (x, y) + βv(y)}

Where

• X denotes the set of possible values for the state variable x.X could be a
subset of a Euclidean space, or any other set.

• Γ : X ⇒ X is the correspondence describing feasibility constraint.
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• Let A be the graph of Γ, i.e.

A = {(x, y) ∈ X ×X | y ∈ Γ(X)}

where x denotes today’s state and y denotes tomorrow’s state.

• F : A→ R is the one-period return function.

• β ≥ 0 is the (stationary) discount factor.

• Let x0 be the initial state.

Definition 91. Let’s call any sequences {xt}∞t=0 in X a plan, given x0 ∈ X, let
denote Π (x0) as the set of feasible plan from x0 :

Π (x0) = {{xt}∞t=0 | xt+1 ∈ Γ (xt) , ∀t = 0, 1, · · ·}

i.e., Π (x0) is the set of all sequences {xt}∞t=0 satisfying the constraints in (SP).

Definition 92. Let ~x = (x0, x1, · · ·) denote a typical element of Π (x0), the utility
of this plan is

u(~x) =
∞∑
t=0

βtF (xt, xt+1)

Definition 93. Denote v∗ (x0) = sup~x∈Π(x0) u(~x)

8.3 Assumptions

Assumption (4.1). Γ(x) is nonempty, for all x ∈ X

Assumption (4.2). ∀x0 ∈ X and ~x ∈ Π (x0) , limn→∞
∑n

t=0 β
tF (xt, xt+1) exists

(although it may be plus or minus infinity).

Assumption (4.3). X is a convex subset of Rl, and the correspondence Γ : X → X
is nonempty, compact-valued and continuous.

Assumption (4.4). The function F : A → R is bounded and continuous, and
0 < β < 1

Assumption (4.5). For each y, F (x, y) is a strictly increasing in each of its first l
arguments.

Assumption (4.6). Γ is monotone in the sense that x ≤ x′ implies Γ(x) ⊆ Γ (x′)

Assumption (4.7). F is strictly concave, that is F (θ(x, y) + (1− θ) (x′, y′)) ≥
θF (x, y) + (1 − θ)F (x′, y′) , all (x, y), (x′y′) ∈ A, and all θ ∈ (0, 1) and the in-
equality is strict is x 6= x′.

Assumption (4.8). Γ is convex in the sense that for any θ ∈ (0, 1), and any
x, x′ ∈ Xy ∈ Γ(x) y′ ∈ Γ (x′) implies θy + (1− θ)y′ ∈ Γ (θx+ (1− θ)x′)

Lemma (4.1). Let X,Γ, F and β satisfy Assumption 4.2. Then for any x0 ∈ X,
and any (x0, x1, · · ·) = ~x ∈ Π (x0)

u(x) = F (x0, x1) + βu (x′) wherex′ = (x1, x2, · · ·)
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Assumption (4.9). F is continuously differentiable on the interior of A.

Theorem (4.2). Let X,Γ, F and β satisfy Assumptions 4.1-4.2. Then the function
v∗ satisfies (FE).

Theorem (4.3). Let X,Γ, F and β satisfy Assumptions 4.1-4.2. If v is the solution
to (FE) and satisfies

lim
n→∞

βnv (xn) = 0, all (x0, x1, . . .) ∈ Π (x0) , allx0 ∈ X

then v = v∗.

Theorem (4.4). Let X,Γ, F and β satisfy Assumptions 4.1-4.2. Let x∗ ∈ Π (x0)
be a feasible plan that attains the supremum in (SP) for initial state x0. Then

v∗ (x∗t ) = F
(
x∗t , x

∗
t+1

)
+ βv

(
x∗t+1

)
, t = 0, 1, 2, . . .

Theorem (4.5). Let X,Γ, F and β satisfy Assumptions 4.1-4.2. Let x∗ ∈ Π (x0)
be a feasible plan from x0 satisfying

v∗ (x∗t ) = F
(
x∗t , x

∗
t+1

)
+ βv

(
x∗t+1

)
, t = 0, 1, 2, . . .

and with
lim sup
t→∞

βtv∗ (x∗t ) ≤ 0

Then x∗ attains the supremum in (SP) for initial state x0.

Theorem (4.6). Let X,Γ, F and β satisfy Assumptions 4.3-4.4, and let C(X) be
the space of bounded continuous functions f : X → R, with the supnorm ‖f‖ =
supx∈X |f(x)|. Then the operator T on C(X) defined by

(Tf)(x) = max
y∈Γ(x)

[F (x, y) + βf(y)]

maps C(X) into itself, T : C(X) → C(X); it has a unique fixed point v ∈ C(X);
and for all v0 ∈ C(X)

‖T nv0 − v‖ ≤ βn ‖v0 − v‖ , n = 0, 1, 2, . . .

Moreover given v the optimal policy correspondence G : X → X defined by

G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

is compact-valued and u.h.c.

Theorem (4.7). Let X,Γ, F and β satisfy Assumptions 4.3-4.6, and let v be a
unique solution to

v(x) = max
y∈Γ(x)

F (x, y) + βv(y)

then v is strictly increasing
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Theorem (4.8). Let X,Γ, F and β satisfy Assumptions 4.3-4.4, and 4.7-4.8, let v
be a unique solution to

v(x) = max
y∈Γ(x)

F (x, y) + βv(y)

and G satisfy
G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

then v is strictly concave and G is a continuous, single-valued function.

Theorem (4.11). Let X,Γ, F and β satisfy Assumptions 4.3-4.4, and 4.7-4.9, let
v and g satisfy

v(x) = max
y∈Γ(x)

F (x, y) + βv(y)

and
g(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

If x0 ∈ int X and g (x0) ∈ Γ (x0), then v is continuously differentiable at x0, with
derivatives given by vi (x0) = Fi (x0, g (x0)) , i = 1, 2, . . . , l

Assumption (4.10). X ⊆ Rl is a convex cone. The correspondence Γ : X → X is
nonempty, compact-valued, and continuous; for any x ∈ X,

y ∈ Γ(x)impliesλy ∈ Γ(λx), allλ > 0

that is, graph of Γ is cone. In addition, for some α ∈ (0, β−1),

‖y‖l ≤ α‖x‖l, ally ∈ Γ(x), allx ∈ X

Assumption (4.11). The function F : A → R is continuous and homogeneous of
degree one, and for some 0 < B <∞

|F (x, y)| ≤ B (‖x‖l + ‖y‖l) , all(x, y) ∈ A

and β ∈ (0, 1)

Theorem (4.12). Let X be a convex cone, H(X) be a space of continuous, homo-
geneous of degree 1 functions, bounded in the norm max||x||=1,x∈X |f(x)|, and let the
mapping T : H(X)→ H(X) satisfy

1. monotonicity: for any f, g ∈ H(X), if f ≤ g then Tf ≤ Tg

2. discounting: exists γ ∈ (0, 1) such that for all f ∈ H and all a > 0, T (f +a) ≤
Tf + γa

Then T is a contraction with modulus γ.

Theorem (4.13). Let X,Γ, F and β satisfy Assumptions 4.10 and 4.11, and let
H(X) be a space of continuous, homogeneous of degree 1 functions, bounded in the
norm max‖x‖=1,x∈X |f(x)|. Then operator T on H(X) defined by

(Tf)(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)]
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maps H(X) into itself, that is T : H(X) → H(X), and has a unique fixed point
v∗ ∈ H(x). In addition

‖T nv0 − v∗‖ ≤ (αβ)n ‖v0 − v∗‖ , n = 0, 1, 2, . . . , allv0 ∈ H(X)

and the associated policu correspondence G : X → X is a compact valued and u.h.c.
Moreover, G is homogeneous of degree one, for any x ∈ X

y ∈ G(x) implies λy ∈ G(λx), allλ ≥ 0

Theorem (4.15). (Sufficiency of the Euler and transversality conditions) Let X ⊂
Rl

+, and let F satisfy Assumptions 4.3−4.5, 4.7 and 4.9. Then the sequence
{
x∗t+1

}∞
t=0

,
with x∗t+1 ∈

∫
Γ (x∗t ) , t = 0, 1, · · ·, is optimal for the problem (SP), given x0, if it

satisfies (2) and (3)

9 Stochastic analysis

Definition 94 (σ algebra). Let S be a set and let F be a family of subsets of S.F
is called a σ -algebra if

• ∅, S ∈ F

• (A ∈ S)⇒ (Ac = S\A ∈ F) (close under complements)

• (An ∈ S, n = 1, 2, · · ·) ⇒ (∪∞n=1An ∈ F) (close under countable unions / in-
tersections)

Definition 95. A pair (S,F), where S is a set and F is a σ -algebra of its subsets
is called a measurable space. Any set A ∈ F is called an F -measurable set.

Definition 96. Given a set S and a collection A of subsets of S, the intersection
of all σ -algebras (which is also a σ -algebras) containing A is called the σ -algebra
generated by A.

Example:

• The power set of S;

• The family {∅, S} (trivial σ -algebra)

• For the set S = {1, 2, 3, 4},F = {{1, 3}, {2, 4},∅, S} is also a σ -algebra

• Let B be the open ball in Rl, σ -algebra generated by B is called Borel-algebra
generated by B. Similarly, it can also be defined by open rectangles (or closed
intervals, half-open intervals if in R

Definition 97 (Measure). Let ( S,F ) be a measurable space. A measure is an
extended real-valued function µ : A → R such that

a µ(∅) = 0

b µ(A) ≥ 0 for all A ∈ F
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c µ is countably additive: if {An}∞n=1 is a countable, disjoint sequence in A, then
µ (∪An) =

∑
µ (An)

Definition 98. If furthermore µ(S) < ∞, then µ is said to be a finite measure
and if µ(S) = 1 then µ is said to be a probability measure.

Definition 99. A triple (S,F , µ) where S is a set, F is a σ -algebra of its subsets
and µ is a measure on F is called a measure space. The triple is called a probability
space if µ is a probability measure

Definition 100 (Measurable Functions). Given a measurable space (S,F), a
real-valued function f : S → R is measurable with respect to F (or F -measurable )
if

{s ∈ S | f(s) ≤ a} ∈ F ,∀a ∈ R

If the space is a probability space, then f is called a random variable.

Definition 101 (Simple Function). Let (S,F) be a measurable space, a function
φ : S → R is called a simple function if it is of the form

φ(s) =
n∑
i=1

aiχAi
(s)

where a1, · · · , an are distinct real numbers, {Ai} is a partition of S, and χAi
are

indicator functions. A simple function is measurable if and only if Ai ∈ F .

Theorem 50 (Pointwise convergence preserves measurability). Let (S,F) be
a measurable space, and let {fn} be a sequence of F -measurable functions converging
pointwise to f. Then f is also measurable.

Theorem 51 (Approximation of measurable functions by simple func-
tions). Let (S,F) be measurable space. If f : S → R is F -measurable, then there
is a sequence of measurable simple functions {φn} , such that φn → f pointwise. If
0 ≤ f, then the sequence can be chosen so that

0 ≤ φn ≤ φn+1 ≤ f, ∀n

If f is bounded, then the sequence can be chosen so that φn → f uniformly.

Definition 102. Let (S,S) and (T, T ) be measurable spaces. Then the function
f : S → T is measurable if the inverse image of every measurable set is measurable,
i.e. if {s ∈ S : f(s) ∈ A} ∈ T for all A ∈ T

Definition 103 (Measurable Selection from a Correspondence). Let (S,S)
and (T, T ) be measurable spaces, and let Γ be a correspondence of S into T. Then
the function h : S → T is a measurable selection from Γ if h is measurable and
h(s) ∈ Γ(s),∀s ∈ S.

Theorem 52 (Measurable Selection Theorem). Let S ⊆ Rl and T ⊆ Rm be
Borel sets, with their Borel subsets S and T . Let Γ : S → T be a (nonempty)
compact-valued and uhc correspondence. Then there exists a measurable selection
from Γ
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Some notation: M(S,S) : space of measurable, extended real-valued functions
on S M+(S,S) : space of measurable, extended real-valued, non-negative functions
on S

Definition 104. Let φ ∈M+(S,S) be a measurable simple function, with the stan-
dard representation φ(s) =

∑n
i=1 aiχAi

(s). Then the integral of φ with respect to µ
is ∫

S

φ(s)µ(ds) =
n∑
i=1

aiµ (Ai)

Definition 105. For f ∈M+(S,S), the integral of f with respect to µ is∫
S

f(s)µ(ds) = sup

∫
S

φ(s)µ(ds)

where the supremum is taken over all simple functions φ in M+(S,S) with 0 ≤ φ ≤
f. If A ∈ S, then the integral of f over A with respect to µ is∫

A

f(s)µ(ds) =

∫
S

f(s)χA(s)µ(ds)

Every f ∈ M+(S,S) can be written as the limit of an increasing sequence {φn}
of simple functions. The next theorem tells us that the integral

∫
fdµ is also the

unique limit t of
∫
φndµ, i.e. it does not depend on the particular sequence {φn}

chosen.

Theorem 53 (Monotone Convergence Theorem - Lebesgue). If {fn} is a
monotone increasing sequence of functions in M+(S,S) converging pointwise to f
then ∫

fdµ = lim
n→∞

∫
fndµ

Now we can think about generate the definition to functions that take negative value.
Define the positive parts and negative parts as below: let f : S → R be an arbitrary
function. We denote

f+(s) =

{
f(s) if f(s) ≥ 0
0 if f(s) < 0

and

f−(s) =

{
−f(s) if f(s) ≤ 0
0 if f(s) > 0

Definition 106. Let (S,S, µ) be a measure space, and let f be a measurable, real-
valued function on S. If f+ and f− both have finite integrals with respect to µ, then
f is integrable and the integral of f with respect to µ is∫

fdµ =

∫
f+dµ−

∫
f−dµ

Definition 107. If (S,S, µ) is a probability space and f is integrable, then call
∫
fdµ

the expected value of f
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9.1 Transition Functions

Definition 108 (Transition Function). Let (Z,Z) be a measurable space. A
transition function is a function Q : Z ×Z → [0, 1] such that

• ∀z ∈ Z,Q(z, ·) is a probability measure on (Z,Z), and

• ∀A ∈ Z, Q(·, A) is a Z -measurable function.

Interpretation: ∀a ∈ Z,A ∈ Z

Q(a,A) = Pr {zt+1 ∈ A | zt = a}

A Markov process can be completely described by this transition function, and the
most important property of Markov process is the same transition function can be
used in all periods, making each period’s problem symmetric. Define T to be the
operator from M+(Z,Z)

(Tf)(z) =

∫
f (z′)Q (z, dz′) ,∀z ∈ Z

Definition 109 (Markov operator). Expected value of f next period if the current
state is z, called the Markov operator associated with Q. Define T ∗λ to be the
operator from the set of probability measure on (Z,Z) :

(T ∗λ) (A) =

∫
Q(z, A)λ(dz),∀A ∈ Z

Interpretation: probability that the state will be in A next period, given that
current values of the state are drawn according to the probability measure λ.

Theorem 54. Following holds

• T maps the space of bounded Z -measurable functions, B(Z;Z) into itself.

• T ∗ maps the space of probability measures on (Z;Z), that is Λ(Z,Z) into itself

• ∫
(Tf)(z)λ(dz) =

∫
f (z′) (T ∗λ) (dz′)

There are other two properties a transition function may have:

Definition 110 (Feller property). A transition function Q on (Z,Z) has the
Feller property if the associated operator T maps the space of bounded continuous
functions on Z into itself; that is if T : C(Z)→ C(Z)

Definition 111 (Monotone). A transition function Q on (Z,Z) is monotone if
the associated operator T has the property that for every nondecreasing function
f : Z → R, the function Tf is also nondecreasing.
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9.2 Probability Measures on Space of Sequences

Given a transition function Q on (Z,Z), we want to look at partial (finite) histories
of shocks and complete (infinite) histories generated by this transition function:

zt = (z1, · · · , zt) , t = 1, 2, · · · z∞ = (z1, z2, · · ·)
Let (Z,Z) be a measurable space, and for any finite t = 1, 2, · · · , let(

Zt,Z t
)

= (Z × · · · × Z,Z × · · · × Z)

denote the product space. We can define a measure on (Zt,Z t)
µt (z0, ·) = Z t → [0, 1], t = 1, 2, . . .

as follow: ∀B = A1 × · · · × At ∈ Z t

µt (z0, B) =

∫
A1

· · ·
∫
At−1

∫
At

1Q (zt−1, dzt)Q (zt−2, dzt−1) · · ·Q (z0, dz1)

This approach can also be used to define probability over infinite sequences z∞ =
(z1, z2, . . .) (So we will work with infinite product space Z∞ = Z×Z× · · · . ) Define
a finite measurable rectangle B ⊆ Z∞ :

B = A1 × A2 × · · · × AT × Z × Z × · · ·
where At ∈ Z, t = 0, 1, 2, · · · , T < ∞. Let C be the family of all finite measurable
rectangles, and A∞ the family of all finite unions of sets in C. Then we can show
that A∞ is an algebra. Let Z∞ be the σ -algebra generated by A∞. Define the
measure similar as before;

µ∞ (z0, B) =

∫
A1

· · ·
∫
At−1

∫
At

Q (zt−1, dzt)Q (zt−2, dzt−1) · · ·Q (z0, dz1)

We can check that this measure will satisfy the three conditions imposed on measures
on an algebra. By the Caratheodory and Hahn Extension Theorem, exists a unique
extension of µ∞ to Z∞. Therefore, (Z∞,Z∞, µ∞) is a probability space.

Definition 112 (Stochastic Process). A stochastic process on (Ω,F , P ) is an
increasing sequence of σ -algebra F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ F ; a measurable space
(Z,Z); and a sequence of functions σ : Ω → Z, t = 1, 2, · · · such that each σt is Ft
measurable.

Definition 113 (Stationarity). A stochastic process is called stationary if Pt+1,···,t+n
is independent of t, i.e

Ft1+k,t2+k,···,ts+k (b1, b2, · · · , bs) = Ft1,t2,···,ts (b1, b2, · · · , bs)
for any finite set of indices {t1, t2, · · · , ts} ⊂ Z with s ∈ Z+, and any k ∈ Z
Definition 114 (Markov process). A stochastic process is called a (first-order)
Markov process if

Pt+1,···,t+n (C | at−s, · · · , at−1, at) = Pt+1,···,t+n (C | at)
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