

Afriat's Theorem proof by Fostel, Scarf, and Todd (2004)

A version of this proof was provided by Ichiro Obara.

Definition 0.1. We say that the observations satisfy the Generalized Axiom of Revealed Preference (GARP) if for every ordered subset $\{i, j, k, \dots r\} \subset \mathbb{N}$:

$$p_i \cdot x_j \le p_i \cdot x_i$$
$$p_j \cdot x_k \le p_j \cdot x_j$$
$$\vdots$$
$$p_r \cdot x_i \le p_r \cdot x_r$$

it must be true that each inequality is, in fact, an equality

Consider a finite data set $D = \{(p^t, x^t) \in \mathbb{R}_{++}^L \times \mathbb{R}_{+}^L, t = 1, \dots, T\}$. This note proves the following proposition, which is skipped in the class.

Theorem 0.2. Suppose that a finite data set D satisfies GARP. Then there exists $\lambda^t > 0, U^t, t = 1, ..., T$ such that

$$U^j \le U^i + \lambda^i p^i \cdot \left(x^j - x^i\right)$$
 for all $i, j \in \{1, \dots, T\}$

Denote by M^T the set of $T \times T$ matrices where all diagonal elements are 0. We say that $A \in M^T$ satisfies GA if the following condition is satisfied.

(GA) For any
$$\left\{a_{t(n)t(n+1)}\right\}_{n=1}^{N}$$

if $a_{t(n)t(n+1)} \leq 0$ for $n = 1 \dots N - 1$
then $a_{t(N)t(1)} \geq 0$

where $a_{N,N+1} = a_{N,1}$. Note that the $T \times T$ matrix where ij entry is given by $a_{ij} = p^i \cdot (x^j - x^i)$ satisfies GA if D satisfies GARP.

First we show that GA is equivalent to the following condition.

(GA*) For any
$$\{a_{t(n)t(n+1)}\}_{n=1}^{N}$$

if $a_{t(n)t(n+1)} \leq 0$ for $n = 1 \dots N$
then $a_{t(n)t(n+1)} = 0$ for $n = 1 \dots N$

Lemma 0.3. GA and GA^* are equivalent.

Proof. Suppose that GA is satisfied. If $a_{t(n)t(n+1)} \leq 0$ for all n, then any $a_{t(n)t(n+1)}$ can be regarded as the tail of a cycle (the one starting at $a_{t(n+1)t(n+2)}$) in GA. So $a_{t(n)t(n+1)} \geq 0$, hence $a_{t(n)t(n+1)} = 0$ for all n

Conversely, suppose that GA^{*} is satisfied. If $a_{t(n)t(n+1)} \leq 0$ for $n = 1 \dots N - 1$, then $a_{t(N)t(1)} < 0$ cannot be the case because then GA^{*} implies $a_{t(N)t(1)} = 0$, a contradiction. Hence $a_{t(N)t(1)} \geq 0$

Now we prove the above proposition.

Proof. of **Theorem** (0.2).

The proof is based on induction. We show that we can find such $\lambda^t > 0, U^t, t = 1, ..., T$ for every $A \in M^T$ that satisfies GA^{*} if we can find them for every $A \in M^{T-1}$ that satisfies GA^{*}. since this is trivially true for T = 1 this proves that the same property holds for every T. We start with the following lemma.

Lemma 0.4. Suppose that $A \in M^T$ satisfies GA^* . Then there exists t^* such that $a_{t^*t} \ge 0$ for $t = 1, \ldots, T$

Proof. Suppose not. Then we can construct a cycle $\{a_{t(n)t(n+1)}, n = 1, ..., N\}$ such that $q_{t(n)t(n+1)} < 0$ for all n. This contradicts GA^{*}. Suppose that $A \in M^T$ satisfies GA and, without loss of generality, assume that $a_{Tt} \ge 0$ for all t. Now define $(T-1) \times (T-1)$ matrix A' as follows.

$$a'_{ij} = \begin{cases} a_{ij} \text{ if } a_{Tj} > 0\\ \min\{a_{ij}, a_{iT}\} \text{ if } a_{Tj} = 0 \end{cases}$$

(Note that any diagonal element is zero $(a'_{ii} = a_{ii} = 0)$, so $A' \in M^{T-1}$. If not, then $a'_{ii} = a_{iT} < 0$. But $a_{iT} < 0$ and $a_{Ti} = 0$ violates GA^{*}).

Lemma 0.5. If $A \in M^T$ satisfies GA^* , then $A' \in M^{T-1}$ satisfies GA^* .

Proof. Suppose not. Then we can find a cycle $\{a'_{t(n)t(n+1)}, n = 1, ..., N\}$ such that $a'_{t(n)t(n+1)} \leq 0$ for all n such that at least one inequality is strict. If every a'_{ij} is a_{ij} in this cycle, then this contradicts the assumption that A satisfies GA *. So suppose that there exists a'_{ij} within this cycle such that $a'_{ij} = a_{iT} \leq 0$ and $a_{Tj} = 0$. Then we can replace a'_{ij} with a_{iT} and a_{Tj} in the original cycle. In this way, we can eliminate such a'_{ij} and guarantee that each element of this cycle is from A. Thus again we reach a contradiction. Hence A' must satisfy GA*

Now we can complete the proof. By the inductive assumption, there exists $\lambda^t > 0, U^t, t = 1, ..., T-1$ such that

$$U^j \leq U^i + \lambda^i a'_{ij}$$
 for all $i, j \in \{1, \dots, T-1\}$

By definition of a'_{ii} , we have

$$U^j \leq U^i + \lambda^i a_{ij}$$
 for all $i, j \in \{1, \dots, T-1\}$

– Afriat's Theorem

Define U^T and $\lambda^T > 0$ as follows.

$$U^{T} = \min_{i \in \{1, \dots, T-1\}} \left\{ U^{i} + \lambda^{i} a_{iT} \right\}$$
$$\lambda^{T} = \max \left\{ 1, \max_{j: a_{Tj} \neq 0} \left\{ \frac{U^{j} - U^{T}}{a_{TJ}} \right\} \right\}$$

We are done if we can show

$$U^{T} \leq U^{i} + \lambda^{i} a_{iT} \text{ for all } i$$
$$U^{j} \leq U^{T} + \lambda^{T} a_{Tj} \text{ for all } j$$

The first inequalities are satisfied by definition. As for the second inequality, it follows from the definition for any j when $a_{Tj} > 0$. If $a_{Tj} = 0$, then

$$U^{j} \leq U^{i} + \lambda^{i} a'_{ij} = U^{i} + \lambda^{i} a_{iT} \text{ for any } i \in \{1, \dots, T-1\}$$

by definition of a'_{ij} . Hence we get

$$U^{j} \leq \min_{i \in \{1, \dots, T-1\}} \left\{ U^{i} + \lambda^{i} a_{iT} \right\}$$
$$= U^{T}$$
$$= U^{T} + \lambda^{T} a_{Tj}$$

This proves that we can find such $\lambda^t > 0, U^t, t = 1, ..., T$ for every $A \in M^T$ that satisfies GA^{*}. since GA^{*} is equivalent to GA by the lemma and GA is satisfied when D satisfies GARP, the proposition is proved.