

Recitations 23

[Definitions used today]

• dictatorial game, Nakamura number, winning subset, pivotal player

Question 1 [285 IV.1 Fall 2019]

- Let N be a finite set of players. A simple game is a family \mathbb{D} of so-called winning subsets of N.
- For example, simple majority with n voters is a simple game with winning subsets $\{D : |D| > n/2\}$.
- A game is gridlocked if there is a subset of N such that neither it nor its complement is winning. Thus, simple majority is gridlocked if and only if n is even. Individual i is pivotal if it belongs to every winning subset, that is, $i \in D$ for all $D \in \mathbb{D}$.
- A game is free if it has no pivotal individuals, and dictatorial if it has only one. For example, the game $\mathbb{D}_P = \{S \subset N : P \subset S\}$ is free if and only if P is empty, and dictatorial if and only if |P| = 1
- a) Prove that if a simple game is neither free nor gridlocked then it is dictatorial.

Question 2 [286 IV.2 Fall 2019]

Given a simple game \mathbb{D} , define its Nakamura number as

$$\nu(\mathbb{D}) = \min_{\mathcal{F} \subset \mathbb{D}} \{ |\mathcal{F}| : \bigcap \{ F : F \in \mathcal{F} \} = \emptyset \}$$

with $\nu(\mathbb{D}) = \infty$ if the game is not free. The number ν computes the smallest number of winning subsets with empty intersection. For example, the Nakamura number of simple majority with n voters is 3 if n = 3 or n > 4.

A simple game \mathbb{D} induces a social welfare function by the definition aPb if $\{i \in N : aP_ib\} \in \mathbb{D}$. Let A be a finite set of alternatives.

- a) Prove that P is acyclic whenever P_i is acyclic for every individual $i \iff \nu(\mathbb{D}) > |A|$
- b) The UN Security Council consists of fifteen members, five of which are permanent with veto power. Otherwise, majority voting prevails. Model this as a simple game and find its Nakamura number