

# Recitations 11 Previous midterms

### Question 1 [Midterm 2017]

Suppose for a given allocation  $c = \left\{ \{c_{i,m}\}_{m=1}^{M} \right\}_{i=1}^{I}$  and price vector  $p = \{p_m\}_{m=1}^{M}$  that (p,c) is a competitive equilibrium. Suppose you also know that for all  $i \in I$  and  $\hat{c}_i = \{\hat{c}_{i,m}\}_{m=1}^{M}$  such that  $\hat{c}_i \succ_i c_i, \sum_{m=1}^{M} p_m \hat{c}_{i,m} > \sum_{m=1}^{M} p_m c_{i,m} = \sum_{m=1}^{M} p_m e_{i,m}$  and all  $i \in I$  and  $\hat{c}_i = \{\hat{c}_{i,m}\}_{m=1}^{M}$  such that  $\hat{c}_i \succeq_i c_i, \sum_{m=1}^{M} p_m \hat{c}_{i,m} \ge \sum_{m=1}^{M} p_m c_{i,m} = \sum_{m=1}^{M} p_m e_{i,m}$ . (That is, you know for all agents that any bundle the agent strictly prefers, he can't afford, and any bundle he weakly prefers, he can just afford.) Show that c is a Pareto efficient allocation.

#### Question 2 [Midterm 2017]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . There exists a total of four units of each good in the economy. Each agent has identical preferences represented by the utility function  $u_i(c_{i,1}, c_{i,2}) = \sqrt{c_{i,1}} + \sqrt{c_{i,2}}$  Agent 1 has an unbounded ability to eat any non-negative amount of either good, but agent 2 can eat at most 1 unit of each good.

- a) Sketch the utility possibilities frontier for this economy.
- b) Set up the "Social Planner's Problem" for this economy for characterizing the set of Pareto efficient allocations.
- c) Are all Pareto efficient allocations solutions to the Social Planner's problem? Are all solutions to the Social Planner's problem Pareto efficient?

### Question 3 [Midterm 2017]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . Each agent has identical preferences represented by the utility function  $u_i(c_{i,1}, c_{i,2}) = (c_{i,1})^2 + (c_{i,2})^2$ . Each has an unbounded ability to eat any non-negative amount of either good.

- a) Suppose  $e_{i,1} = e_{i,2} = 1$  for  $i \in \{1, 2\}$ . Carefully define an allocation and a competitive equilibrium.
- b) Find all competitive equilibria of this economy from these endowments. Are they Pareto efficient?
- c) Now suppose agent 1 is endowed with 2 units of good 1 and 1 unit of good 2, while agent 2 is endowed with 0 units of good 1 and 1 units of good 2. (or  $e_1 = (2, 1)$  and  $e_2 = (0, 1)$ ). Is each agent eating his own endowment a Pareto efficient allocation? Find all competitive equilibria of this economy from these endowments.

### Question 1 [Midterm 2018]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . There exists a total of 1 unit of each good. Agent 1's preference is represented by utility function  $u_1(c_{1,1}, c_{1,2}) = \sqrt{c_{1,1}} + \sqrt{c_{1,2}}$ . Agent 2's preference is represented by the utility function  $u(c_{2,1}, c_{2,2}) = 0$ . Both agents have an unbounded ability to eat any non-negative amount of either good.

- a) Sketch the utility possibilities frontier for this economy.
- b) Set up the two "Arrow Problems" for this economy,
- c) Are all Pareto efficient allocations a solution to each Arrow problem?
- d) Are all solutions to each Arrow problem Pareto efficient? If so, prove why so. If not, argue why not.
- e) Set up the class of "Negishi Problems" for this economy.
- f) Are all Pareto efficient allocations a solution to a Negishi problem? (If so, which ones.)
- g) Are all solutions to a Negishi problem Pareto efficient?

## Question 2 [Midterm 2018]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . There exists a total of 4 units of each good. Both agents' preference are represented by utility function  $u_i(c_{i,1}, c_{i,2}) = \sqrt{c_{i,1}} + \sqrt{c_{i,2}}$ . Agent 1 has an unbounded ability to eat any non-negative amount of either good. Agent 2, on the other hand, cannot eat more than 3 units of either good.

- a) Suppose  $e_{1,1} = 4, e_{1,2} = 0, e_{2,1} = 0$  and  $e_{2,2} = 4$ . Find the competitive equilibrium from this endowment specification. Is it Pareto efficient? If so, prove. If not, argue why not, and specifically, what part of the standard proof breaks down.
- b) Suppose  $e_{1,1} = 0, e_{1,2} = 0, e_{2,1} = 4$  and  $e_{2,2} = 4$ . Find the competitive equilibrium from this endowment specification. Is it Pareto efficient? If so, prove. If not, argue why not, and specifically, what part of the standard proof breaks down.

### Question 3 [Midterm 2018]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . There exists a total of 1 unit of each good. Both agents' preferences are represented by utility function  $u_i(c_{i,1}, c_{i,2}) = (c_{i,1})^2 + (c_{i,2})^2$ . Both agents have an unbounded ability to eat any non-negative amount of either good.

- a) Find the set of Pareto efficient allocations which can be supported as a competitive equilibrium.
- b) Find a Pareto efficient allocation which cannot be supported as a competitive equilibrium. Why not? What step of the proof of the 2 nd Welfare Theorem breaks down?

#### Question 1 [Midterm 2019]

Consider a pure exchange economy with two agents,  $i \in \{1, 2\}$  and two goods  $m \in \{1, 2\}$ . There exists a total of 3 units of each good in the economy. Agent 1 has preferences represented by the utility function  $u_1(c_{1,1}, c_{1,2}) = \min\{2, c_{1,1}\} + \min\{2, c_{1,2}\}$ . Agent 2 has preferences represented by the utility function  $u_2(c_{2,1}, c_{2,2}) = c_{2,1} + c_{2,2}$ . Both agents have an unbounded ability to eat any non-negative amount of either good.

- a) Carefully characterize the set of Pareto Efficient allocations for this economy and sketch the utility possibilities frontier for this economy.
- b) Set up the "Social Planner's" (or Negishi) Problem for this economy.
- c) Are all Pareto Efficient allocations solutions to the Social Planner's problem? Are all solutions to the Social Planner's problem Pareto Efficient? Explain.
- d) Define a Competitive Equilibrium and give the set of Competitive Equilibria for this economy for all possible endowment specifications subject to the aggregate endowment being 3 for each good. Are they all Pareto Efficient? Are any Pareto Efficient. If not, why not?
- e) Can all Pareto Efficient Allocations in this environment be supported as a Com- petitive Equilibrium for some set endowments (again where the aggregate en- dowment is 3 for each good)? If not, what assumption of the 2nd Welfare Theorem is violated?

# Question 2 [Midterm 2019]

Consider an I agent, 2 good world, with prices are normalized such that  $p_1 + p_2 = 1$  with  $p_1 \in [0, 1]$ . Debreu's existence proof showed, under certain conditions, that a particular correspondence, P(p), mapping  $p \in [0, 1]$  to subsets of [0, 1] was guaranteed to have a fixed point  $p^*$  such that  $p^* \in P(p^*)$  and that  $z_m(p^*) = 0$  for all goods m where  $z_m(p^*)$  is the excess demand for good m

- a) Suppose  $p_1 > 0$  and  $p_2 = 0$ . What is P(p)?
- b) Suppose  $p_2 > 0$  and  $p_1 = 0$ . What is P(p)?
- c) Suppose  $p_m > 0$  for all m and that  $z_1(p) > z_2(p)$ . What is P(p)?
- d) Suppose  $p_m > 0$  for all m and that  $z_1(p) < z_2(p)$ . What is P(p)?
- e) Suppose  $p_m > 0$  for all m and that  $z_1(p) = z_2(p)$ . What is P(p)?