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Abstract

How does intermediation in the housing market affect an economy’s house price dis-
tribution, trade volume, and welfare? I study flipping houses - fast buying and re-
selling houses by intermediaries, which has become more prevalent in recent years.
While more flipping increases market thickness, it also involves intermediaries hold-
ing housing assets instead of households. Which effect dominates for welfare? To
answer these questions, I develop a decentralized trade model with intermediaries
with two-sided heterogeneity in inventory and housing asset valuation, where house-
holds trade houses with each other or with flippers. Search is random, information
is asymmetric, and household valuations evolve stochastically. Using a universe of
administrative transaction data from Ireland, I document a steady increase in house
prices, trade volume, and flipped transactions between 2012 and 2022. In particular, I
find that the number of flipped transactions doubled. Through a calibrated model, I
use an increase in the mass of flippers to cause an increase in flipping. This increase
in flipping led to a 1.5% decrease in average house prices, implying the increase in
house prices seen in the data was not caused by flippers but instead by the decrease
in mortgage rates. The increase in flipping in the model caused a modest increase in
trade volume as compared to the data. Finally, I find the increase in flipping caused
an average decrease in household welfare of 0.2%, chiefly by decreasing the steady
state fraction of households owning a home. On the positive side, misallocation of
housing due to search frictions decreased.
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1 Introduction

This paper studies flippers, who are agents that buy and resell houses within a short pe-
riod. Flippers facilitate trade between households by playing the role of a middleman.
Flipping has become increasingly popular in recent years 1. Despite that, the role of flip-
pers remains incompletely understood, especially regarding their impact as intermedi-
aries within the larger housing market.

On the one hand, flippers thicken the market. On the other hand, at least for some time,
flippers hold onto houses that households would otherwise own, which comes at a wel-
fare cost. Considering this trade-off, the welfare implications of flipping become theo-
retically ambiguous and must be assessed using a quantitative model. Further, what are
the magnitudes are such welfare effects, and what are the effects of flipping on prices
and trade volume? To answer these questions, I develop a decentralized search model of
households and flippers, disciplining its parameter choices using a universe of transac-
tion data from Ireland.

The economy consists of a unit mass of households and a mass f of flippers. There is a
fixed supply of houses. Every house is either owned by a flipper or a household, and
every party at all times must own either zero or one house. Over time, households ran-
domly meet flippers or other households, providing an opportunity for trade if one party
currently owns a house and the other does not. Households derive utility from owning a
house based on their individual type, denoted by δ, which represents their flow payoff of
housing. These payoffs evolve stochastically over time due to preference shocks, arriving
at a Poisson rate γ. This dynamic captures the empirical reality that households’ housing
needs change due to factors like job relocations, changes in family size, or shifts in finan-
cial circumstances. A household with a high δ values owning a house more and is willing
to pay a higher price to purchase one, whereas a household with a low δ is more inclined
to sell.

Flippers, in contrast, do not derive direct utility from holding houses. Their objective is
purely to profit from the price spread between buying and selling properties. This as-
sumption reflects their role as market participants who prioritize short-term gains over
the intrinsic value of living in a home. Flippers act as middlemen, stepping in to buy
houses when a suitable household buyer has not yet been found and reselling these

1As evidenced by the nearly doubled proportion of flipped transactions in my sample, rising in Ireland
from 4.55% in 2012 to 8.05% in 2021. A similar trend is seen in the United States, where the share of flipped
transactions grew from 5.1% in 2008 to 9.6% in 2021. Data source: ATOM, real estate data provider.
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houses when a household with a higher valuation appears. This role is crucial in a market
characterized by search frictions, as flippers help to smooth transactions and reduce the
time it takes for houses to change hands. Without flippers, households may face longer
waits to find suitable trading partners, leading to greater inefficiency in the market.

A flipper, lacking knowledge of the exact δ of the household, sets take-it-or-leave-it prices
P∗

0 and P∗
1 for buying and selling, respectively. This pricing mechanism reflects the asym-

metric information in real estate transactions, where intermediaries like flippers must
set prices without knowing the precise valuation of their counterparties. In equilibrium,
households and flippers follow cutoff strategies. Households without houses accept of-
fers to buy based on whether their current flow payoff δ exceeds a threshold δ∗0 (P∗

1 ). Sim-
ilarly, households with houses accept offers to sell based on whether their current flow
payoff δ falls below a threshold δ∗1 (P∗

0 ). When two households meet, they negotiate the
price through a Nash bargaining process, splitting equally the surplus generated from
the trade. Unlike transactions with flippers, this negotiation considers the valuations of
both parties, allowing households to directly capture a portion of the trade surplus. This
simplification of inter-household interaction captures the complex dynamics often seen
in housing markets, where various intermediaries, such as real estate agents or platforms
like Zillow, can reduce information frictions and influence pricing and trade outcomes.

The core mechanism of the model revolves around how flippers impact the distribution
of trades and the resulting price distribution. An increase in the number of intermedi-
aries ( f ) deepens both the market for sellers and buyers by increasing the likelihood of
a household encountering a counterpart. It allows houses to change hands more fre-
quently, which, in a dynamic context, reduces average prices as future values of houses
decrease. This outcome is particularly relevant in markets with high transaction costs or
time delays, where a thicker market can smooth price adjustments and facilitate faster ad-
justment between willing-to-trade agents. However, for welfare, the presence of flippers
also means that a portion of the housing stock is held by non-households at any given
time, which could otherwise be owned by households, introducing a tension between
liquidity provision and ownership displacement.

The model reveals that the price spread 2, between buying and selling prices is indepen-
dent of search parameters like meeting rates (λ), as flippers extract all surplus from the
marginal household. Instead, the spread is directly related to the underlying distribution
of household valuations, G(·), and the stochastic evolution of δ. This independence from
search rates highlights a fundamental property of the housing market: price differen-

2one of measures of liquidity in the market
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tials are shaped more by the heterogeneity in valuations and the dynamics of preference
changes than by the frequency of meetings. It comes from a price-setting design in which
the flipper targets a marginal type of household. Comparative statics show that while an
increase in f generally leads to lower prices due to increased speed of transaction for both
buyers and sellers, the effect of changes in the meeting rate (λ)- a standard exercise in the
literature of decentralized trade- is more nuanced and is misleading. A higher λ implies
that in equilibrium, it is more even to meet flippers without a house, but the distribu-
tion of surplus between them can shift depending on the prevailing market conditions.
For the relevant part of parameter space, it means an increase in prices whenever trade
happens with a flipper.

I use comprehensive administrative transaction data from Ireland, covering the entire
universe of residential property sales. This dataset includes detailed information on trans-
action dates, addresses, and sale prices. I document key moments of the house price dis-
tribution and returns in that market for the whole country. I also analyze the composition
of trade, distinguishing between transactions involving flippers and those involving only
households, which sheds light on the market’s evolution over the decade.

A crucial part of my empirical work is the identification of flipped transactions. Following
the standard definition in the housing literature, I classify a house as flipped if it is resold
within two years of purchase. The proportion of flipped transactions nearly doubled,
rising from 4.55% in 2012 to 8.05% in 2021, while real house prices increased by 76% over
the same period. This trend mirrors developments in other markets, such as the United
States, where the proportion of flipped transactions increased from 5.1% in 2008 to 9.6%
in 20213. This period also saw a 135% increase in trade volume.

These empirical observations motivate the development of a quantitative model to assess
the role of flippers as intermediaries. Through a calibrated model, I use an increase in
the mass of flippers to cause an increase in flipping. The model is estimated using data
from 2012 and from 2021. This increase in flipping led to a 1.5% decrease in average
house prices, implying the increase in house prices seen in the data was not caused by
flippers but instead by the decrease in mortgage rates. The findings challenge the con-
ventional view that flippers necessarily drive up prices. The increase in flipping in the
model caused a modest increase in trade volume and turnover as compared to the data.
Trade volume increased by 5%, where inter-household trade is crowded out by trade with
flippers. Household welfare decreases by 0.2%, implying that ease of facilitating trade is
dominated by the reduction in homeownership among households. The change in owner

3Data source: ATOM, real estate data provider.
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distribution combined with a high level of value function for owners will generate most
of this overall negative effect since, with more flippers, there are fewer household owners.
Even though more houses are in the hands of flippers, due to general equilibrium effects,
house allocation is less inefficient. Misallocation is measured in the mass of agents in the
wrong asset position versus an efficient allocation. On the positive side, misallocation of
housing due to search frictions decreased.

To explore policy implications, I conduct counterfactual exercises of regulating fast-house
trading through sales taxes on flipping activity. I assess the consequences of introducing
a 9% sales tax on flippers, similar to the policy in place in Ireland before 2011. The results
show that such a tax significantly curtails the number of flipped transactions, leading to
a reduction in total trade volume. While this policy mitigates the crowding out of house-
hold trades, it comes with a downside: the welfare gains for non-owners are reversed,
and misallocation increases.

1.1 Literature review

Measurement of Flipping. The literature on speculative activity in housing markets is
well-established, with studies such as Bayer et al. (2020), Depken et al. (2009), and Lee
and Choi (2011) providing definitions and frameworks for analyzing flipping behavior.
These studies typically define flipping as buying and reselling houses within a short pe-
riod—usually two years. The role of flippers, however, is often not fully appreciated
within the broader context of market intermediation. While many studies focus on local
price effects and short-term returns, this is the first one to study the impact of flippers on
the whole housing market and welfare. My paper extends this literature by examining
flipping through the lens of search frictions and intermediation, building on the broader
housing market literature that includes studies like Gavazza (2016), which looks at inter-
mediation and its impact on liquidity, and Hugonnier et al. (2020), which explores liq-
uidity provision in broader asset markets. By extending the time horizon and geographic
scope, I analyze the welfare implications of flippers in a dynamic context. Some studies
have investigated whether house improvements occur during short-term ownership in
flipping. For instance, Depken et al. (2009) finds that a subset of flipped houses under-
went improvements, though this is not necessary for flipping to occur. Literature focuses
on various roles of flippers and differentiates between quality improvements, pure arbi-
trage, and the role of middleman, often conflated in other studies. In my analysis, I focus
on the role of a middleman.

4



Intermediation and Search Frictions. This paper contributes to the literature on Over-
the-Counter (OTC) search and decentralized markets. Intermediation in markets with
search frictions has been widely studied by Duffie et al. (2005), Hugonnier et al. (2020),
Weill (2020), and Lagos and Rocheteau (2009), Albrecht et al. (2007), Üslü (2019) who focus
on how the presence of middlemen influences price formation and liquidity. My model
draws on this literature by incorporating intermediaries into a decentralized market, with
two-sided heterogeneity in asset valuation as a basis for trade.

My contribution builds upon the OTC literature by extending the analysis to a new asset
category - housing asset. Unlike traditional OTC markets like corporate bonds or money
market assets, the housing market involves less frequent transactions, which introduces
unique search frictions and welfare considerations. In such a setup, flippers serve as
liquidity providers but also generate inefficiencies due to their holding of housing assets.
In this sense, my model aligns more closely with housing-specific studies such as Krainer
and LeRoy (2002) and Allen et al. (2019), Albrecht et al. (2016) who have examined the role
of search frictions in determining house prices and liquidity. In particular, I extend the
insights from these papers by modeling the endogenous asset position of an intermediary,
who not only facilitates trade but does it by holding onto assets (similar to car dealers).

Intermediation in the Housing Market. Unlike financial markets with brokers acting as
pure intermediaries, intermediaries in housing play a more complex role. Gavazza (2016)
(similar Ngai and Tenreyro (2014), Wheaton (1990)) shows that real estate brokers help
reduce transaction costs and increase liquidity, though their fees can affect the net costs for
buyers and sellers. Andrew Haughwout, et al. (n.d.) examines how investors, including
flippers, influenced housing supply during the market crisis, stabilizing prices but also
amplifying cycles when they acted collectively. My work builds on this by modeling
flippers’ decision-making as intermediaries who balance holding assets with facilitating
transactions, providing insights into their impact on market liquidity, prices, and welfare.

Price Distribution and Welfare Effects. The distribution of housing prices, especially
in the context of search frictions, has been explored by authors such as Piazzesi et al.
(2020), Rekkas et al. (2020), and Diamond and Diamond (2024),Iacoviello (2005). These
studies investigate how search frictions affect price dispersion and affordability, but they
typically do not incorporate the role of intermediaries in their models. My paper fills
this gap by analyzing how flippers influence price distribution by participating in both
market sides, thereby affecting liquidity and welfare outcomes. Furthermore, the welfare
implications of flipping are ambiguous due to the opposing forces of increased market
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thickness and the costs of delayed allocation. Similar to Head et al. (2014), I model these
welfare effects and quantify their magnitude through counterfactual policy experiments,
such as imposing taxes on flippers. These taxes have been studied in housing literature,
as in Kopczuk and Munroe (2015), which focuses on capital gains taxation. Still, few stud-
ies have explored the differential effects of taxing short-term ownership, as I do here. The
taxation of housing transactions, particularly in the context of speculative behavior, has
been analyzed by authors such as Sommer and Sullivan (2018), Davis and Van Nieuwer-
burgh (2015) and İmrohoroğlu et al. (2018). However, these studies primarily focus on
broader property tax implications rather than specific taxes targeting short-term owner-
ship by intermediaries. My paper adds to this literature by evaluating the impact of a 9%
sales tax on flippers, a policy analogous to the pre-2011 tax regime in Ireland. Through
a calibrated model, I show how such a tax influences prices, trade volumes, and welfare
outcomes, specifically highlighting its negative impact on non-owner households.

Outline. Section 2 introduces a toy model of the housing market, where households trade
exclusively with flippers. The model highlights the role of flippers as intermediaries and
the trade-off between liquidity and hold-up. Section 3 presents empirical findings related
to prices, returns, and patterns of trade and flipping in Ireland, using the universe of
transaction data and cross-sectional household surveys. Section 4 extends the model to in-
clude household-to-household and household-to-flipper trades and calibrates the model.
That section explains the main mechanism of the model. Section 5 discusses the coun-
terfactual exercises, tax policy experiment, and simulation of the model. The section first
analyzes the effects of the increased mass of intermediaries, examining price, quantity,
and welfare changes. Additionally, it explores the implications of a change in search rate
equivalent to increasing flipping activity, an exercise prevalent in OTC search literature,
comparing these scenarios. The policy analysis involves quantifying the impact of a 9%
sales tax on flippers, a policy similar to the pre-2011 tax regime in Ireland, and evaluating
its effects on market outcomes and welfare. Section 6 provides robustness checks, sensi-
tivity analyses for the model. Finally, Section 7 concludes by summarizing the key results.
All proofs, derivations, additional empirical results and data validation are included in
the Appendix.
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2 Simplified Model

In the following section, I consider a simplified environment where all transactions be-
tween households are mediated through flippers, and direct household-to-household
trades are excluded. Houses are traded in a decentralized market based on differences in
their valuations, and the flipper lacks knowledge of household type. The model analyzes
how flippers facilitate trade between households, acting as intermediaries in a market
where the timing of trade opportunities is random. The reason for this simplified model
is that it captures the core mechanism of intermediation as detailed in the quantitative
model (see Section 4). However, it does not reflect the empirical reality that most trans-
actions in the market occur directly between households without involving flippers. Key
results here show that the price spread between buying and selling prices is independent
of search parameters like meeting rates (λ), and the comparative statics highlight that in-
creasing the number of flippers ( f ) reduces prices while changes in the meeting rate (λ)
can have varied effects depending on the parameter values.

Environment. Economy is populated by measure 1 of households and mass f of flippers.
Time is continuous, and agents are infinitely lived. There are two goods: nonstorable
consumption good c and indivisible housing asset q. Houses are homogenous, and their
supply is fixed at s. There is neither production of houses nor deterioration of the housing
supply. Households and flippers trade houses for consumption goods. Trade in houses
is decentralized, and meeting opportunities arrive at random. For now trade is restricted
to flipper and household; and household and flipper only. Trade between households is
prohibited. One-on-one meetings between interested parties arrive with Poisson intensity
λ. If a meeting happens, the flipper (acting as buyer or seller) proposes a price. The
household accepts or rejects the offer. If the offer is accepted, the price is paid, the asset
changes owners, and the subperiod ends. Meetings between one specific household and
individual flipper have a.s. zero chances to repeat in the future. Both households and
flippers discount future with a common rate of r. All agents have risk-neutral preferences.
This implies that agents will have q ∈ {0, 1} of houses. The exact timing of the discrete
version of this dynamic continuous time game can be found in Appendix A.

Households. Households have heterogeneous types δ. Delta captures how much an
agent values owning a house. Those δ dividends from owning a house are non-tradable
and evolve stochastically.
A household without a house and all flippers has zero flow utility. Household with a
house enjoys flow δ. Types are drawn from a fixed distribution with cumulative distri-
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bution function G(·). Assume that G(·) is uniform on [0, δ̄]. Distribution G(·) is public
knowledge. Valuations are private to households; in particular, flippers don’t know indi-
vidual household’s valuations. With Poisson intensity, γ type changes, and it is redrawn
from the distribution G(·).

Flippers. Flippers do not derive any flow utility from owning or not owning an asset.
Their sole purpose is to facilitate trade. They act as intermediaries, ensuring that house-
holds can buy or sell houses. Their only role involves proposing a price during bilateral
meetings. By private information assumption about types, the flipper can not condition
terms of trade on specific δ type of household they trade with.

Strategies. I focus on history-independent strategies (with no dependence on the history
of past realizations of λ, γ). A flipper without a house q = 0 proposes a bid price P0,
while a flipper with a house q = 1 proposes an ask price P1. Household (q, δ) contin-
gent on successful meeting flipper with opposite asset position 1 − q decides to accept or
reject relevant price offer P1−q. Across all households, this decision is characterized by
cutoff δ∗q (P1−q). This reservation value characterizes households with q houses, who are
indifferent between accepting and rejecting the flipper’s offer P1−q. In equilibrium, with
prices P∗

0 and P∗
1 , the household buys an asset if he does not have one and his δ ≥ δ∗0 (P∗

1 )

and sells the asset if she has one and δ ≤ δ∗1 (P∗
0 ). Assume that trade follows at cutoffs.

Payments follow, and the house changes hands.

2.1 Equilibrium

Stationary, symmetric Markov Perfect Equilibrium with cutoffs consists of the cumulative
distribution of households H(q, δ), fraction of flippers F(q) for each q ∈ {0, 1}, two prices:
P∗

0 proposed by flipper-buyer and P∗
1 proposed by flipper with a house; cutoffs δ∗0 (·) for

households buying a house and δ∗1 (·) for households without a house, value functions for
flippers W(q) and for households V(q, δ). Formally:

Definition 1 (Stationary, Symmetric Markov Perfect Equilibrium with Cutoffs). is:

1. distributions : H : (q, δ) → R, F : (q) → R

2. value functions V : (q, δ) → R, W : (q) → R

3. decision rules: cutoffs δ∗q (·) : (·) → R, q ∈ {0, 1}, prices P∗
q ∈ R+, q ∈ {0, 1}

• Given prices P∗
· : value functions V and cutoffs δ∗· solve household problem (given by HJB

equations 1, 2 and conditions 10, 11 )
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• Given cutoffs δ∗· (·): value functions W and prices P∗
· solve flipper problem (given by HJB

equations 3, 4)

• Accounting holds (given by equations 8, 9)

• Law of motions hold (given by equations 5, 6, 7)

In short, I will call this equilibrium the stationary equilibrium. First, I will describe house-
hold problems and then the flipper’s problem - the only agent making the decision (price
offer), and last, stationary distribution conditions.

Household’s problem. Each household derives value potentially from flow utility, shocks
to preferences, and trade surplus.
Buyer. Household without a house with type δ has 0 flow utility. Preference shock arrives
at rate γ. Conditional on arrival, δ′ is redrawn from the distribution G. That household
meets with a flipper with intensity λ. The household will meet a flipper with a house with
rate λF(1). Trade will follow whenever there is a double coincidence of wants. If there
are gains from trade, the household pays the price P1 and becomes an owner.

rV(0, δ) = γ
∫ δ̄

0
[V(0, δ′)− V(0, δ)]dG(δ′)︸ ︷︷ ︸

change of type

+ λF(1) · max{−P1 + V(1, δ)− V(0, δ), 0}︸ ︷︷ ︸
HH vs F trade surplus

(1)

Seller. Homeowner household with type δ gets: flow utility δ, shock to type arrives at
rate γ and trade opportunity arrives with one-on-one rate λ. If trade benefits the seller,
he gets paid P0 and becomes the nonowner.

rV(1, δ) = δ︸︷︷︸
flow

+ γ
∫ δ̄

0
[V(1, δ′)− V(1, δ)]dG(δ′)︸ ︷︷ ︸

change of type

+ λF(0) · max{P0 + V(0, δ)− V(1, δ), 0}︸ ︷︷ ︸
HH vs F trade surplus

(2)
Each household value function problem can be seen as no arbitrage condition with in-
stantaneous return from investing V(q, δ) at rate r on the left-hand side and with three
sources of dividend: flow utility, state change, and benefit from trade. Note that there is
no capital gain due to stationarity of the problem.

Flipper’s problem. Flipper does not inhabit a house and has 0 flow utility. Buyer. Flipper
without a house decides to pick a price P∗

0 , taking into account the cutoff δ1(·) and its
effect on which fraction of households she trades with. Household buyers come from
probability distribution dH(1, δ), and trade opportunities arrive randomly at rate λ. Thus
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overall meeting rate is equal to λ
∫ δ1(P∗

0 )
0 dH(1, δ). If a meeting happens and trade follows,

she pays P∗
0 and becomes an owner. This problem looks in the following way:

rW(0) = max
P0

λ
∫ δ1(P0)

0
[−P0 + W(1)− W(0)]dH(1, δ) (3)

Seller. Flipper with a house has no flow, proposes a price P∗
1 and meets randomly at

rate λ households without a house from distribution dH(0, δ) taking δ1(·) into account.
When the meeting succeeds, and the offer is accepted, she gets paid P∗

1 and becomes a
nonowner:

rW(1) = max
P1

λ
∫ δ̄

δ0(P1)
[P1 + W(0)− W(1)]dH(0, δ) (4)

Accountings. Households and flippers who own a house hold all of s houses, which
means that: ∫ δ̄

0
dH(1, δ) + F(1) = s (5)

For any δ sum of all households without a house and below δ and households with a
house and below δ has to be equal corresponding level of cdf of type G(δ),thus:

∫ δ

0
dH(0, δ) +

∫ δ

0
dH(1, δ) = G(δ) ∀δ ∈ [0, δ̄] (6)

Sum of fraction of flippers without a house F(0) and wit F(1) is equal f , so:

F(0) + F(1) = f (7)

Law of Motion. In stationary equilibrium, inflow and outflows to homeownership and
non-ownership, both for households and flippers, must be balanced. Trade and change in
the evolution of types generate those flows. Let’s focus on inflows and outflows to [0, δ]

taking into account position of δ vs cutoffs δ∗0 (P∗
1 ), δ∗1 (P∗

0 ).
Homeownership (inflow and outflow to [0, δ], q = 1). Inflows to homeownership come
from households buying houses and changes in valuations. If the first term is positive
(trade happens), if δ is high enough such that households who don’t own a house are
willing to trade (their valuation is between δ∗0 (P∗

1 ) and δ), and trade will happen with
intensity λF(1). The second inflow to [0, δ] is proportional to the mass of households
who are owners and are above δ and with intensity γ are hit with taste shock and redraw
valuation to be below δ which happens with probability G(δ).
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λF(1)
∫ max{δ,δ∗0 (P∗

1 )}

δ∗0 (P∗
1 )

dH(0, δ′)︸ ︷︷ ︸
inflow from trade

+ γG(δ)
∫ δ̄

δ
dH(1, δ′)︸ ︷︷ ︸

inflow from change of type from[δ,δ̄]

=

= λF(0)
∫ min{δ,δ∗1 (P∗

0 )}

0
dH(1, δ′)︸ ︷︷ ︸

outflow from trade

+ γ(1 − G(δ))
∫ δ

0
dH(1, δ′)︸ ︷︷ ︸

outflow from change of type to[δ,δ̄]

(8)

Not owning (inflow and outflow to [0, δ], q = 0). Outflows from homeownership come
from selling houses by households and changes in valuation. Trade happens for low
enough valuations (below or at δ∗1 (P∗

0 )), the mass of interested households is equal to
integral, and the rate at which trade happens is equal to λF(0). The second outflow from
[0, δ] is proportional to the mass of households who are non-owners and are below δ

and with intensity γ are hit with taste shock and redraw valuation to be above δ which
happens with probability 1 − G(δ). In a similar way, we can derive flows to and from
nonownership by households.

λF(0)
∫ min{δ,δ∗1 (P∗

0 )}

0
dH(1, δ′)︸ ︷︷ ︸

inflow from trade

+ γG(δ)
∫ δ̄

δ
dH(0, δ′)︸ ︷︷ ︸

inflow from change of type from[δ,δ̄]

=

= λF(1)
∫ max{δ,δ∗0 (P∗

1 )}

δ∗0 (P∗
1 )

dH(0, δ′)︸ ︷︷ ︸
outflow from trade

+ γ(1 − G(δ))
∫ δ

0
dH(0, δ′)︸ ︷︷ ︸

outflow from change of type to[δ,δ̄]

(9)

Using the equations above for δ = δ̄, we can derive the equilibrium trade balance for
flippers. It equates a rate of trade of flippers buying and selling:

λF(1)
∫ δ̄

δ∗0 (P∗
1 )

dH(0, δ) = λF(0)
∫ δ∗1 (P∗

0 )

0
dH(1, δ) (*)

Prices are such that the agent at the cutoff is indifferent between trading and not trading,
i.e., in equilibrium:

P∗
0 = V(1, δ∗1 (P∗

0 ))− V(0, δ∗1 (P∗
0 )) (10)

P∗
1 = V(1, δ∗0 (P∗

1 ))− V(0, δ∗0 (P∗
1 )) (11)
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2.2 Characterization

In this section, we show the existence of stationary equilibrium with cutoffs. We charac-
terize distributions, value functions, inaction region, and bid-ask spread. Proposition 1
establishes the existence and uniqueness of symmetric stationary equilibrium. Because
the model has many ingredients and proofs for each of these ingredients are different, I
relegated the formal discussion to the Appendix B.

Proposition 1 (Existence). If f < s < 1 and G ∼ U[0, δ̄], there exists a unique stationary
equilibrium with cutoffs: with value functions V, W, pdf dH, masses F and prices P· satisfying
1-11.

Proposition 2 (Characterization). In equilibrium

1. V(q, ·) are increasing, piecewise linear and differentiable everywhere except at cutoffs

2. δ∗1 (P∗
0 ) < δ∗0 (P∗

1 )

3. dH(q, ·) are piecewise constant

4.

P∗
1 − P∗

0 =
δ∗0 (P∗

1 )− δ∗1 (P∗
0 )

r + γ
=

δ̄

2(r + γ)

Linear and monotonous value functions ensure the existence of cutoffs. The final part of
a proposition 2 establishes inaction region-agents between δ∗1 (P∗

0 ) and δ∗0 (P∗
1 ). For such

types, households are not interested in trade, no matter their asset position. Linearity of
value functions and of cumulative distribution function allows us to characterize spread
and note that the inaction region will consist of half of all households (search parameter
invariant).
This result relies on the assumption that the exogenous distribution of types G is uniform.
Let’s notice that spread (return) is not a function of market structure: search friction pa-
rameter λ or mass of flipper f . That means that spread is unaffected by intermediation or
speed at which trade opportunities are realized. This result is in line with monopolistic
dealer results from Duffie et al. (2005).

Price setting The Flipper, by price choice, affects the marginal agent with whom he trades,
which influences how fast he trades. The problem of flippers resembles the problem of
monopolists who, by choosing price, affect quantity. Suppose that equilibrium price P∗

0

has been perturbated and increased by an infinitesimal amount- there is a net gain to
the flipper without a house- a higher rate of meeting interested seller, but there is an
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additional cost-namely that he has to pay a bit more. In equilibrium, marginal changes in
costs and benefits equalize, which allows us to derive it as a first-order condition using
this perturbation:

∫ δ∗1 (P∗
0 )

0
dH(1, δ)︸ ︷︷ ︸

MB to F(1)from charging less

= [−P∗
0 + W(1)− W(0)] · δ′∗1 (P∗

0 ) · dH(1, δ∗1 (P∗
0 ))︸ ︷︷ ︸

MC to F(1)from decreasing prices

Likewise, for a flipper who is selling a house, perturbation of form decreasing a price
around equilibrium price P1 allows us to get:

∫ δ̄

δ∗0 (P∗
1 )

dH(0, δ)︸ ︷︷ ︸
MB to F(1)from charging more

= [P∗
1 + W(0)− W(1)] · δ′∗0 (P∗

1 ) · dH(0, δ∗0 (P∗
1 ))︸ ︷︷ ︸

MC to F(1)from increasing prices

Comparative statics There are two ways in which more intermediation can happen in this
model. It can be faster to meet a trading partner (increase in λ), or there are more trading
partners (increase in f ). A numerical example from Figure 1 captures the difference be-
tween those two. This plot presents cuttoff of non owners δ∗0 (P∗

1 ), sufficient statistic due
to Propostion 2. An increase in the number of trading partners decreases a cutoff δ∗0 (P∗

1 )

and, in effect, decreases price P∗
1 as well P∗

0 . Both masses F(0) and F(1) increase, mak-
ing meeting a flipper more likely. This way, both buyers’ and sellers’ chances of meeting
their counterparts both in the current period and in the future improve. It also reduces
dH(1, δ) mass of agents interested in trade with flippers 4. Taking this into account, the
price offer of the flipper seller at the time of meeting with the household decreases since it
has to internalize an option value of a flipper once he becomes a buyer and wants to buy.
It will be easier for households in the future to sell a house to a flipper, and price offers
proposed by flippers take this into account. Effects of λ depend on bargaining protocol
and are, in principle, ambiguous. Both types of flippers extract all the surplus from cutoff
agents, but which type’s outside option improves more depends on the parameters of the
model. With individual meetings λ becoming more instant, masses of flippers with and
without a house will equalize, making the meetings of one type faster and another slower
versus the status quo, creating a potential increase in price via a reduction in F(1). In case
presented on Figure 1, δ∗0 (P∗

1 ) and thus P∗
1 is increasing in λ. For studying intermediation,

I will choose varying mass of flippers f , keeping deep meeting parameter λ unchanged.

4as shown in appendix B
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Figure 1: Sufficient statistic : cutoff of non owners δ∗0 (P∗
1 )
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Notes: Panel δ0(P1) as function of f and λ Model solved for r = 0.036, s = 0.69, γ = 0.07,δ̄ = 1. δ∗0 (P∗
1 ) is

decreasing function of f and increasing in λ. The price offer of the flipper seller at the time of meeting with
the household decreases since it has to internalize an option value of a flipper once he becomes a buyer
and wants to buy. It will be easier for households in the future to sell a house to a flipper, and price offers
proposed by flippers take this into account. With individual meetings λ becoming more instant, masses of
flippers with and without a house will equalize, making the meetings of one type faster and another slower
versus the status quo, creating a potential increase in price via a reduction in F(1).

3 Data

In this section, I use transaction data and household survey data related to the Irish
housing market. This section offers insights into price trends, flipping activity, and the
evolving composition of trade between 2012 and 2021. Though the calibrated quantita-
tive model in the next section uses data only from the years 2012 and 2021, this section
documents secular trends of the whole housing market in a country using full tax data.
The analysis highlights several key findings: a substantial increase in the proportion of
flipped transactions, a notable rise in house prices, and shifts in mortgage rates and trade
volume. Specifically, the share of flipped transactions nearly doubled, and real house
prices grew significantly. Additionally, I explore the residual price variation using re-
gression analysis to isolate the contribution of unexplained factors, which connects the
empirical patterns to the theoretical model. This connection is particularly important for
capturing heterogeneity in households’ valuations in the quantitative analysis.

3.1 Data sets

We utilize three data sets to study the effects of flipping: transaction data, cross-section data
on households and data on quality of houses for Ireland. The first data set is administrative
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data5 from the Residential Property Registry of Ireland, covering all residential property
transactions between 2010 and early 2024. The dataset contains detailed information on
638,751 transactions of over 513,506 unique homes, including: transaction dates (exact
day of transaction), prices, exact addresses, and whether the property is a new house
or an old dwelling. Due to the definition of a 2-year time leg between trades in defin-
ing flipping, I will present evidence for data between 2012 and 2021, highlighting that in
quantitative changes, the focus is on the years 2012 and 2021 only. Approximately 20% of
these transactions are trades of houses multiple times in the sample. The housing stock
in Ireland between 2010 and 2024 is roughly constant at 2 mln houses6. That data is used
to identify flipping transactions, trade volume, and prices. Cross-section data from the
Household Finance and Consumption Survey (HFCS) provides detailed information on
households’ financial conditions. Collected for Eurozone countries and, in particular, con-
tains information about homeownership, consumption, mortgages, and income 7. We use
second and fourth wave8 of HFCS. The house in this survey is defined as a household’s
main residence.

3.2 Descriptive Evidence

First, use a data set of all residential property transactions (houses, apartments, condos,
and construction sites). We identify a house by its exact address. Using information
about data of transactions allows us to identify houses that have been:(a) never retraded
in our sample, (b) flipped (traded between 30 days and 2 years either leg), or (c) traded
multiple times but not flipped. We drop suspicious observations of properties retraded in
multiples within 30 days 9 and of abnormal gross returns 10. This eliminates housing units
sold in bulk (often apartment buildings saved in our dataset without separate apartment
unit numbers) and those houses that underwent extreme change. In effect, that reduces
our sample by less than 1%. Our procedure, if anything, underestimates a fraction of fast
trades.

Margin of flipping. Figure 2 is a central figure of this paper. The red line shows the

5Data source: tax data from collecting stamp duty - sales tax on houses
6Data source: Irish census
7Data set similar to Survey of Consumer Finances (SCF)
8For most countries, the fieldwork was carried out in 2010 and 2011 for the first wave (2010), between

2013 and the first half of 2015 for the second wave (2014) - with Irish cross section collected in 2013- and in
2017 for the third wave (2017). The fourth wave (2021) was carried out between the first half of 2020 and
the first half of 2022

9Quite often apartments registered as single address and sold within a short period of time
10Within (−∞, 10000%] annual return excluding less than 500 observations out of 25k flipped addresses-

most likely mistakes in data collection.
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fraction of house transactions where either the purchase or sale occurred within less than
2 years - applying the literature definition of flipping absent of conditioning on improving
the quality of housing. It nearly doubled, from 4.55% in 2012 to 8.05% in 2021. The

Figure 2: Flipping in Ireland 2012-2021

Notes: Red solid line shows the fraction of house transactions where either the purchase or sale occurred
within less than 2 years - applying the literature definition of flipping absent of conditioning on improving
housing quality. It doubled, from 4% in 2012 to 8% in 2021. The dotted (dashed) red line shows the fraction
of transactions where the flip was on the buyer (seller) side. Overall, buyers and seller flips don’t suggest
imbalance and holding by either type of flipper.

dotted (dashed) red line shows the fraction of transactions where the flip was on the
buyer (seller) side. Overall, buyers and seller flips don’t suggest imbalance and holding
by either type of flipper11.

Table 1 contains statistics on mean prices for flippers, non-flipped multiply traded, and
average prices for all houses. All house prices are in 2012 euros. Average prices for each
type of trade are increasing. Figure 3 shows the behavior of prices across time (left
panel) and quantities (right). The increase between the years 2012 and 2021 in average
traded price was 76%. The data reveals that flipped houses are generally cheaper and
exhibit lower price variance than non-flipped houses. The latter fact can be found in the
appendix. The right panel presents a volume of traded houses between 2012 and 2021,
which increased by 135%. Freeze in trade due to the COVID-19 pandemic seems to be
isolated only to the 2020 year. This and the fact that HFCS was conducted every 3 years
allowed the conduct of the 2012-2021 analysis instead of restricting the sample to pre-
2020, making further analysis of stationary economies: one in 2012 and one in 2021.

11That matters for the quantitative model in which the abovementioned trade balance in stationary equi-
librium is one of the equilibrium conditions
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Table 1: Mean house prices

Year No retrade Retraded < 2y Retraded ≥ 2y Overall

2012 194,900 148,900 158,200 190,700
2013 205,900 139,400 169,600 200,800
2014 219,200 150,200 183,300 209,400
2015 223,100 167,000 197,400 215,800
2016 249,900 193,700 213,400 240,100
2017 267,800 213,500 241,800 259,700
2018 295,700 220,600 262,200 285,600
2019 306,200 227,900 263,300 295,100
2020 321,800 226,800 272,300 307,700
2021 331,600 240,800 299,400 319,800

Note: Table shows mean prices of residential properties in Ireland (2012 euros) across different types of
transactions from 2012 to 2021. The average prices are broken down into properties that were not retraded,
those retraded within two years (flipped), and those retraded after two years. Overall, prices have shown
a consistent increase across all categories.

Figure 3: Prices and Quantities

(a) Prices (b) Trade Volume

Note: The left panel displays the average prices for all transactions, with a distinction between flipped
houses (red solid line), multiply traded houses (green dashed line), and overall average prices (blue dotted
line). Flipped houses tend to be priced lower, with less variation compared to non-flipped properties. The
right panel illustrates the growth in the volume of house transactions.

Table 2 shows annualized gross returns on multiply traded houses - flipped, traded over
more than 2 years, overall. Those returns are annualized averages for that year of the
second trade. What is notable is that returns on flipped houses are uniformly higher.
Lower values of non-flipped trades early in the sample come from the composition of the
sample - the limit of observed transactions in the past. For that reason, only returns on
flipped houses would be used in later Section 4.
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Table 2: Gross returns

Year Retraded < 2y Retraded ≥ 2y Overall

2012 1.29 0.93 1.22
2013 1.28 0.97 1.18
2014 1.47 1.00 1.29
2015 1.55 1.11 1.42
2016 1.45 1.16 1.36
2017 1.45 1.14 1.30
2018 1.38 1.15 1.25
2019 1.33 1.12 1.19
2020 1.27 1.10 1.15
2021 1.32 1.10 1.15

Note: Annualized gross returns for multiply traded houses in Ireland, categorized by flips (re-traded within
2 years), trades that took over 2 years, and the overall sample. The returns are averaged based on the year
of the second trade. Flipped properties consistently show higher annualized returns compared to houses
re-traded after longer periods. The lower returns observed for longer-held properties in the earlier years
are likely influenced by the limited transaction data available from past periods.

Results from HFCS, a household survey data, are summarized in Table 3. Those moments
capture characteristics of the Irish housing market in 2012 and 2021. One can find: home-
ownership rate, average: house value, other property value, price of house at acquisition;
time owner lives in a house, consumption and information related to mortgages.
Irish households use more than one mortgage to finance their housing asset purchase.
This motivates using the average mortgage rate on all mortgages for later calculates of
discount rate in Section 4.

Average house prices. For the sake of the model, the average house in our sample is
an object of interest. To find the average house price distribution, I exploited observable
variations in data by running hedonic regression12. First, calculate residual prices by re-
gressing log prices on observables.
I took residuals of such regression, add estimated average fixed effects, and take expo-
nent. This way of working can address the issue of fat tails and does not require reducing
the sample for extreme observations. In baseline case we will use city and quarter-year
fixed effects.

Alternative set ups are presented in Table 4 with details of regressions in appendix
E. In particular, R2 = 42% for city, quarter-year fixed effects set up shows a non-trivial
dispersion in residual prices, which we will connect to unexplained heterogeneity due to

12building on Rosen (1974)
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Table 3: Housing Market in Survey Data

Variable Moment 2012 Value 2021 Value

Homeownership Fraction 68.84 69.05
Mortgage Rate Net Rate 3.62 2.47
Consumption Mean 17,000 19,000
Live in House Mean years 17.88 17.28

Home Value Mean 190,000 316,000
Other Property Mean 391,000 448,000
Wealth Mean 216,000 370,000
Size of House Mean sqm 111 129
Home Price at Acquisition Mean 157,000 176,000
Current Home Value Mean 192,000 316,000
Nr of Mortgages on hmr Mean 1.52 1.56
Nr of Properties Mean 1.77 1.80
Income Mean 55,000 71,000

Note: Summary of key statistics from the Household Finance and Consumption Survey (HFCS) for the Irish
housing market in 2012 and 2021. The table presents data on homeownership rates, mortgage rates, and
average values for consumption, home value, and other property values, as well as the number of years
households live in their homes. It also includes information on the size of houses, home prices at acqui-
sition, and the number of mortgages and properties owned. The decline in mortgage rates and increase
in property values between 2012 and 2021 reflect significant changes in the Irish housing market over the
decade. These data moments are critical for parameter calibration in the quantitative model discussed in
Section 4.

household types distribution. Literature on house prices (Rekkas et al. (2020),Diamond
and Diamond (2024)) supports this observation, finding similar levels of observable vari-
ation. Table 5 presents prices of average houses for different years. The increase between
the years 2012 and 2021 in average house price was 68%.
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Table 4: Variation Explained by Observables

Fixed Effects R2

County 0.27
City 0.36
District 0.50
City, Quarter-Year 0.42
District, Quarter-Year 0.57

Note: The table presents the R2 values from hedonic regressions of log prices on various spatial and time-
fixed effects. The city and quarter-year fixed effects specification captures 42% of the price variation,
highlighting significant unobserved heterogeneity in household valuations beyond geographic and time-
specific factors.

Table 5: Mean prices of average houses

Year No retrade Retraded < 2y Retraded ≥ 2y Overall

2012 161,400 175,300 160,800 162,000
2013 163,900 162,500 159,400 163,600
2014 183,200 164,800 165,200 179,100
2015 192,100 176,200 181,300 189,500
2016 214,700 203,700 199,500 211,600
2017 229,500 217,600 220,500 227,300
2018 249,800 233,700 240,200 247,400
2019 255,300 243,000 246,600 253,300
2020 269,200 247,100 253,100 265,300
2021 287,700 269,900 282,100 285,500

Note: Table shows the average prices of houses in Ireland for different transaction categories from 2012 to
2021, expressed in 2012 euros. Categories include houses that were not retraded, houses retraded within
2 years, and those retraded after 2 or more years. Across all categories, average house prices increased
significantly, with an overall rise of 68% from 2012 to 2021.

4 Quantitative Model

In this section, we extend the model of trading in the housing market by allowing house-
holds to buy and sell directly with each other, in addition to trading with flippers. This
enriched framework captures the more complex interactions in the market, where house-
holds with varying valuations meet randomly and negotiate the terms of trade. Inter-
household trade is quantitatively important and accounts for over 90% of trade.

The computational strategy used to solve this model is outlined in Appendix D. The
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model is estimated using minimum distance estimation, targeting key empirical mo-
ments of the Irish housing market in 2012. Then, I explain the main mechanism, with a
concentration of trade with flippers happening with extreme household types and inter-
household with moderate types. I explain equilibrium distribution, reservation value,
prices, and meeting rates across types. I simulate the model to analyze the behavior of
households around trade events, where I find mean reversion of types to pre-trade levels.

Key exercises include a counterfactual analysis with the proportion of flippers increased
to match the observed rise in flipped transactions between 2012 and 2021 in Ireland. An-
other exercise compares the impact of increasing the mass of flippers ( f ) against changes
in the meeting rate (λ), which is commonly studied in the literature on intermediation.
A notable finding is that increasing λ results in disproportionately high welfare gains for
flippers, which is less realistic compared to adjustments in f . Finally, I conduct a policy
experiment in which a sales tax of 9% is imposed on flippers, similar to what Ireland had
until 2011.

4.1 Allowing Household - Household trade

Building on Section 2, we add another way for trade between agents. In addition to
household vs. flipper trade- which happens at a one-on-one rate λ- we allow another
type of meeting.
Now, households can also trade with each other in housing assets, and such a one-on-
one meeting rate is ρ. Households are heterogeneous in δ and in meeting rates as well.
Meetings are random, and masses of traders meet. Conditional on meeting if trade sur-
plus is positive, it is split via Nash bargaining 50-50 between buyer and seller. This way
of modeling inter-household trade follows closely Hugonnier et al. (2020) and captures
complicated games between households, which is not modeled here explicitly. What is
important is that this interaction results in an equal share of surplus between trading
households. Shocks to current type δ happen with rate γ. The supply of housing assets is
s, and the discount rate is r. The central object of interest is reservation value defined as:

∆V(δ) = V(1, δ)− V(0, δ)

Which relates the value of having an asset to lack thereof.

Household’s problem.
Seller. Homeowner household with valuation δ gets: flow utility δ, can change its type,
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which happens with γ rate, and it’s drawn from the distribution G and trade opportunity
with flipper without a house arrive at rate λ while trade opportunities with other house-
holds arrive at rate ρ. Conditional on specific meeting and positive surplus, the household
sells a house to a flipper without a house (for P0) or to another household (with type δ′

for P(δ, δ′)) and becomes nonowner. Using the Bellman optimality principle, the value
function is characterized by the following:

rV(1, δ) = δ︸︷︷︸
flow

+ γ
∫ δ̄

0
[V(1, δ′)− V(1, δ)]dG(δ′)︸ ︷︷ ︸

change of type

+ λF(0) · max{P0 − ∆V(δ), 0}︸ ︷︷ ︸
HH vs F trade surplus

+

+ ρ
∫ δ̄

0
max{P(δ, δ′) + V(0, δ)− V(1, δ), 0}dH(0, δ′)︸ ︷︷ ︸

HH vs HH trade surplus

Buyer. On the other hand, a household without a house with type δ has: 0 flow utility
and can experience a shock to its current type δ with rate γ. With intensity λ meets with
flipper with a house and with rate ρ meets with another household with a house with
type δ′. If a household buys from a flipper (pays for it P1) or from another household
(with type δ′ for P(δ, δ′) and becomes owner.

rV(0, δ) = γ
∫ δ̄

0
[V(0, δ′)− V(0, δ)]dG(δ′)︸ ︷︷ ︸

change of type

+ λF(1)max{−P1 + ∆V(δ), 0}︸ ︷︷ ︸
HH vs F trade surplus

+ ρ
∫ δ̄

0
max{−P(δ, δ′) + V(1, δ)− V(0, δ), 0}dH(1, δ′)︸ ︷︷ ︸

HH vs HH trade surplus

Prices are proposed by flippers such that marginal household with the opposite asset
position has all the surplus extracted. Therefore, in equilibrium price offered by flipper-
seller (buyer) P∗

1 (P∗
0 ) extracts from household-buyer (seller) δ∗0 (P∗

1 ) (δ∗1 (P∗
0 )), so:

P∗
1 = ∆V(δ∗0 (P∗

1 )) P∗
0 = ∆V(δ∗1 (P∗

0 ))

When trade between buyer δ and seller δ′ households happens they split the surpluses in
half:

P(δ, δ′) =
1
2

∆V(δ) +
1
2

∆V(δ′)
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A necessary condition for trades to follow in equilibrium is that the buyer’s type is higher
than the seller’s,i.e., δ′ ≥ δ. We break ties by allowing flippers to trade if they have
identical deltas. Note that only trade between low delta owner and high delta nonowner
can happen.

Reservation value representation. In equilibrium, only sellers with lower type will trade
with buyers with higher type. This, combined with expression for prices between house-
holds, yields for owners:

rV(1, δ) = δ + γ
∫ δ̄

0
[V(1, δ′)− V(1, δ)]dG(δ′) + λF(0)1[δ < δ∗1 (P∗

0 )][∆V(δ1)− ∆V(δ))]+

+ρ
∫ δ̄

δ

1
2
[∆V(δ′)− ∆V(δ)]dH(0, δ′)

With the last integral summing over nonowner types higher than δ.
For nonowners, the problem becomes:

rV(0, δ) = γ
∫ δ̄

0
[V(0, δ′)− V(0, δ)]dG(δ′) + λF(1)1[δ > δ∗0 (P∗

1 )][−∆V(δ0) + ∆V(δ)]+

+ρ
∫ δ

0

1
2
[∆V(δ)− ∆V(δ′)]dH(1, δ′)

With the last expression integrating over lower deltas of owners. This problem can be
represented using an object characterizing agent-specific discount rate, which considers
the additional opportunity cost r, a shock to types, and random trade opportunities, call
it endogenous discount rate. Formally:

Definition 2. Endogenous discount rate:

σ(δ) = r+γ+λF(0)1[δ < δ∗1 (P∗
0 )]+λF(1)1[δ > δ∗0 (P∗

1 )]+
ρ

2

∫ δ̄

δ
dH(0, δ′)+

ρ

2

∫ δ

0
dH(1, δ′)

At this point we can see also endogenous rates of meeting a flipper λF(0), λF(1) and with
other households ρ

2

∫ 1
δ dH(0, δ′), ρ

2

∫ δ
0 dH(1, δ′).
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Using an effective discount rate allows us to rewrite the value function as follows:

σ(δ)∆V(δ) = δ + γ
∫ δ̄

0
∆V(δ′) dG(δ′)

+ λF(0)1[δ < δ∗1 (P∗
0 )]∆V(δ∗1 (P∗

0 ))

+ λF(1)1[δ > δ∗0 (P1)]∆V(δ∗0 (P∗
1 ))

+
ρ

2

∫ δ̄

δ
∆V(δ′) dH(0, δ′) +

ρ

2

∫ δ

0
∆V(δ′) dH(1, δ′)

This representation separates type-specific δ discount -σ(δ) and δ reservation value-∆V(δ)

from the total flow on the right-hand side. The total flow comes from agent-specific flow
utility, continuation value, and expected payment in trade with flippers and households.

Flippers problem. Flippers behavior remains like in Section 2 so we skip it here. To
determine equilibrium, the value function of flippers with a house is equal in equilibrium
to:

W(1) =
λ

r

[
∫ δ̄

δ∗0 (P∗
1 )

dH(0, δ′)]2

σ(δ∗0 (P∗
1 ))dH(0, δ∗0 (P∗

1 ))

where

σ(δ∗0 (P∗
1 ))

−1 = r + γ +
ρ

2

∫ δ̄

δ∗0 (P∗
1 )

dH(0, δ′) +
ρ

2

∫ δ∗0 (P∗
1 )

0
dH(1, δ′)

The difference here with Section 2 is only in the discount rate, instead of r with a part
coming from inter-household trade against relevant parts of the distribution. At cutoff,
there is no effect on the discount rate.
Similarly, the value of a flipper without a house is expressed as:

W(0) =
λ

r
[
∫ δ∗1 (P∗

0 )
0 dH(1, δ′)]2

σ(δ∗1 (P∗
1 ))dH(1, δ1)

where

σ(δ1)
−1 = r + γ +

ρ

2

∫ δ̄

δ∗1 (P∗
0 )

dH(0, δ′) +
ρ

2

∫ δ∗0 (P∗
1 )

0
dH(1, δ′)

Problems of flipper and agent can be linked together, and one can express reservation
values of agents at cutoffs as:

∆V(δ∗0 (P∗
1 )) = (1 +

r
λ
)W(1)− W(0)
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∆V(δ∗1 (P∗
0 )) = W(1)− (1 +

r
λ
)W(0)

In other words, the marginal household’s value is the flipper’s reservation value, and
trade delays cause the correction.

Envelope condition. In equilibrium, the endogenous discount rate is equal to the inverse
of the marginal reservation value:

σ(δ) =
1

∆V′(δ)

Stationary distribution. Following close notation from Section 2, we focus on the flow
equation using cumulative distributions.

Homeownership (inflow and outflow to [0, δ], q = 1) is characterized by:

λF(1)
∫ max{δ,δ∗0 (P∗

1 )}

δ∗0 (P∗
1 )

dH(0, δ′)︸ ︷︷ ︸
F sells to HH

+ γG(δ)
∫ δ̄

δ
dH(1, δ′)︸ ︷︷ ︸

inflow from change of type from[δ,δ̄]

= (12)

= λF(0)
∫ min{δ,δ∗1 (P∗

0 )}

0
dH(1, δ′)︸ ︷︷ ︸

F buys from HH

+ γ(1 − G(δ))
∫ δ

0
dH(1, δ′)︸ ︷︷ ︸

outflow from change of type to[δ,δ̄]

+ ρ
∫ δ

0
dH(1, δ′)

∫ δ̄

δ
dH(0, δ′)︸ ︷︷ ︸

HH trades with HH

(13)

To characterize trade volumes (overall and each type) as a rate per period, we use the
following definition in the spirit of OTC literature:

Definition 3 (Trade Volumes). Denote by κ, κ1, and κ2 overall, household vs. household and
flipper vs. household trade volumes, respectively. Then:

κ = ρ
∫ δ̄

0

∫ δ̄

0
1[δ′ ≥ δ]dH(1, δ)dH(0, δ′)︸ ︷︷ ︸

κ1−HH vs HH trade

+ λF(0)
∫ δ∗1 (P∗

0 )

0
dH(1, δ′) + λF(1)

∫ δ̄

δ∗0 (P∗
1 )

dH(0, δ′)︸ ︷︷ ︸
κ2−F and HH trade

The distinction between trade between household κ1 and κ2 would be central in cali-
brating the model. Note that we count successful trades above, which happen between
households only if the seller has lower δ than the buyer’s δ′. Also, the last two integrals
would equal the volume of houses sold and bought in total by flippers.
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Definition 4 (Price distribution ). F is cdf of prices:

F(p) :=
ρ

κ

∫ δ̄

0

∫ δ′

0
1[P(δ, δ′) ≤ p]dH(1, δ)dH(0, δ′) +

κ2

2κ
1[P∗

0 ≤ p] +
κ2

2κ
1[P∗

1 ≤ p]

The last two elements are prices from Flipper’s trade.

Now, I characterize an economy where there are no search frictions. That would be a
reference for trade via a centralized market with a unique price.

4.2 Frictionless Economy

Consider an economy with mass f of flippers in which trade happens immediately, in
Walrasian fashion. There is no search friction, and interested parties can exchange hous-
ing assets in an anonymous exchange at any time.
In that case, in the equilibrium, top s agents who value the asset the most will hold it13.
Given that in such an economy, flippers don’t value housing assets, households with δ

equal and above 1− s have all assets in equilibrium. Let’s denote the lowest house owner
δ∗. Note that this allocation is efficient. The price P∗ for which market clears is equal to
present value of δ∗ agent holding asset forever, thus: P∗ = δ∗

r = 1−s
r .

At any point in time, due to shock, the γ mass of agents ends up in the wrong asset posi-
tion and trades immediately. The rate at which owners will end up in the wrong asset po-
sition is γ per owner (mass of G(δ∗) and they would trade with nonowners like to trade
which mass is 1 − G(δ∗). Volume of trade as a rate is then κF = γ(1 − G(δ∗))G(δ∗) =

γs(1 − s) while turnover is equal to γ(1 − s).

4.3 Computation

Numerical algorithm. Computation of equilibrium requires solving for two cutoffs, two
value functions, endogenous distributions for households, and masses for flippers. The
hard part of the problem is to find cutoffs. It relies on the generalization of the proof
of existence from Section 2, which shows the fixed point on recursion for cutoffs. The
general idea follows from combining recursion on cutoffs and solving value function iter-
ation for reservation values using continuous time methods. For fixed cutoffs, I use equa-
tions related to stationary distributions (law of motion, balance of trade for flippers, and

13Consider trade in equilibrium from section 2 - their flippers have to keep some of the housing stock if
non-zero trade happens in equilibrium. Or there would be autarky.
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accounting) to find relevant masses and distributions. Value functions of flippers are ex-
plicit functions of distribution, masses, and cutoffs. Next, I use them to solve households’
reservation value function problem by discretizing the grid on δ types and using inte-
gration as a linear operator to represent it in matrix form. Solving this essentially means
inverting a numerically well-conditioned matrix. Reservation values of households at
cutoffs allow introducing recursion on cutoffs. Since the flow utility enters linearly, recur-
sion has an additive form, which makes it converge. Once convergence is achieved, we
solve for individual value functions of household-given reservation values, solving two
standard discrete value function iterations. The numerical solution and algorithm details
are described in the appendix D.

Matching data with model. We define flipping in the data by separating flippers from
households using the time between double trades: flippers are those who conduct both
transactions under the 2-year limit, and households when retrade takes over 2 years. The
model uses exponential random variables, which implies that multiple trades are expo-
nential. Technical details are discussed in appendix G.
This allows us also, in a clear way without simulating the model, to match the returns of
flippers in model P1

P0
to the ones in the data. The data counterpart is calculated as the mean

return of flipped houses, which is average across those trades, with the first leg between
2010 and 2012 and the second leg of the transaction in 2012.

Parametrization. The unit of time is one year. Discount rate r is set to 3.62%, average
mortgage rate in 2012 (calculated using HFCS survey data)14. It is standard for housing
literature to take mortgage rate for discount rate as opposite to T-bills rates (Favilukis et
al. (2017),Daljord et al. (2019)). Household consumption and homeownership rate s were
calculated from HFCS survey data. Set δ̄ to 1, effectively bounding flow from ownership
by one year of consumption. The rest of the parameters - f , λ, ρ, γ were jointly estimated.

Estimation strategy. To estimate the parameters f , λ, ρ, and γ of the model, we use a min-
imum distance estimator (MDE). The following moments are used: the share of flipped
transactions, the average price of houses, the return on flipping, and the average time
since moving into a house. Parameter f guides share of flipped houses, λ return on flip-
ping, ρ mean price, and γ time since moving in. The minimum distance estimator seeks
to find the parameter values that minimize the distance between the model-generated

1437% of households own a mortgage, and those who own a property quite often have more than one
(via Table 3. I used the average for all mortgages, including on the second and next house.
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moments and the corresponding empirical moments relative to target values. Formally,
the estimator is defined as:

θ̂ = arg min
θ

[
(

m(θ)− m̄
m̄

)′W(
m(θ)− m̄

m̄
)

]
where θ = ( f , λ, ρ, γ) represents the parameters to be estimated, m(θ) denotes the vector
of moments predicted by the model, m̄ is the vector of empirical moments, and W is the
weighting matrix, in this case identity matrix weighting deviations.

The calibration results are summarized in Table 6, which shows the estimated parame-

Table 6: Estimation

Parameter Description Value

Externally Source

r Mortgage rate 3.62% HFCS
s Homeownership rate 68.84% HFCS

Matched moments Target Model Data

f mass of Flippers 2.1% Fraction of flipped 4.81% 4.56%
ρ Search HH vs HH 0.3 Average price 11.62 11.42
λ Search F vs HH 3 Return on flipping 1.27 1.29
γ Taste shock 7% Tenure time 2.54% 5.59%

Note: All parameters are estimated to 2012 data. Mortgage rate r and homeownership rate s are externally
calibrated to HFCS household data. The other four parameters f , λ, ρ, γ are estimated using a minimum
distance estimator. Parameter f guides share of flipped houses, λ return on flipping, ρ mean price, and γ
time since moving in.

ters and their fit with the empirical data. The advantage of the model is that to calculate
model implied moments, I didn’t have to simulate the model. In particular, distributions
dH(q, ·) don’t require iterating on market clearing conditions once cutoffs are determined.

4.4 Model Fit

Simulating the model, I run a regression of prices on a dummy flipper variable for trans-
actions in which trade happened with a flipper:

Pi = α + βFi

28



β was calculated in simulation for T = 100 periods, discretized with dt = 0.1 for N =

10, 000 households and f ∗ (1 + N) flippers. In the data counterpart, I regressed 2012
prices (divided by 2012 consumption) on a dummy indicating trade with flippers, with
city, and quarter-year fixed effects for 25,238 observations. Negative correlation from
Table 7 suggests that trade with flippers has lower prices. Such correlation corresponds
to price lower by around 5% on average.

Table 7: Untargeted moment: regression coefficient

Data Model
β -0.21 -0.29
Fixed effects ✓
Consumption adjusted ✓

Note: β was calculated in simulation for T = 100 periods with a time step dt = 0.1, involving N = 10, 000
households and f × (1 + N) flippers. The empirical counterpart uses data from 2012 prices adjusted for
consumption, with city and year-quarter fixed effects, across 25,238 observations.

Table 8 reports results regarding the composition of trade in percentage of housing stock,
overall and with flippers, for 2012 and 2021.

Table 8: Untargeted moment: Trade volume as fraction of housing stock

Data Model
2012

Total trade 1.274 1.298
Flipper trade 0.058 0.062

2021
Total trade 2.410 1.243
Flipper trade 0.183 0.103

Note: In second part of table f comes from counterfactual (with r at 2012 level) and r was adjusted to 2021
level, no reestimation of model otherwise
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4.5 Main mechanism

Figure 4: Effective discount rate
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Notes: The figure illustrates three key aspects of the model: (1) Trade concentration by type—sellers (red
area S) trade with flippers when δ ≤ δ∗1 (P∗

0 ), while buyers (green area B) purchase from flippers when
δ ≥ δ∗0 (P∗

1 ); households with δ ∈ (δ∗1 (P∗
0 ), δ∗0 (P∗

1 )) remain inactive (blue area I). (2) Price determina-
tion—reservation values at δ∗1 (P∗

0 ) and δ∗0 (P∗
1 ) represent the bid and ask prices in trades with flippers,

while ∆V(δ∗) approximates the price of household-to-household trades. (3) The curvature of the reserva-
tion value is driven by σ(δ), which is decreasing for lower δ (convex value function) and increasing for
higher δ (concave value function), with δ∗ as an inflection point and a zone of minimal trade partner avail-
ability.

Properties of value functions, distribution of households, and price distribution are pre-
sented in appendix F. The main mechanism of the model is presented in Figure 4. It
allows us to infer three crucial things: trade concentration for each type of trade, prices
for each type of trade, and the curvature of the reservation value.
First are the areas where trade is concentrated with flippers and inter-household trade.
Households with a house with δ ≤ δ∗1 (P∗

0 ) (sellers in red area S) sell a house when
meeting with a flipper without a house happens. Homeowners above this δ∗1 (P∗

0 ) cut-
off won’t have a surplus from trade and won’t trade. This in equilibrium keeps dH(1, δ)

for δ ≤ δ∗1 (P∗
0 ) low. Non-owners with δ ≥ δ∗0 (P∗

1 ) (buyers in the green area B) buy a house
when they meet the flipper with a house. In equilibrium, dH(0, δ) for δ ≥ δ∗0 (P∗

1 ) will be
low since trade with the flipper reduces the mass of nonowner in that part of the type’s
space. Non-owners below δ∗0 (P∗

1 ) won’t trade with flippers since there are no gains from
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trade. Overall all households with δ ∈ (δ∗1 (P∗
0 ), δ∗0 (P∗

1 )) (blue area of inaction I) won’t
trade with flipper. Inter-household trade can be inferred from σ(δ). On the one hand, a
surplus of the owner in selling to other households decreases in δ when such an oppor-
tunity arrives. On the other hand, the overall rate of meeting nonowners is decreasing
in δ. This makes the distribution of owners dH(1, δ) increasing function of δ. A similar
effect for non-owner makes high δ have a high surplus from buying a house from another
household. At the same time, the overall rate at which such trade arrives is relatively low.
Since high types buyers will meet at easy sellers in equilibrium dH(0, δ) for high types
will be low. σ(δ) considers both buyer and seller opportunities for each type δ. σ(·) has
the minimum at δ∗, a point at which overall meetings of both sellers and buyers are the
lowest. Around that point, mass buyers and sellers in the wrong asset position (wrong
versus frictionless allocation) are the highest, the rates at which they can find households
are the lowest, and the trade volume is the highest. The reason why meetings of trade
partners are the hardest around δ∗ is that the mass of counterparty interested in trade and
wrong asset position is relatively low. Suppose you are the seller just below δ∗. Inefficient
allocation means you are interested in selling. The mass of household sellers with higher
δ is low because they have high chances of meeting a buyer with a lower delta but more
likely below δ∗.
Secondly, one can read prices in this model from Figure 4. Reservation value at cutoffs
δ∗1 (P∗

0 ),δ
∗
0 (P∗

1 ) are bid and ask price from flipping. Since most inter-household trade is
around δ∗, ∆V(δ∗) approximates the mean household-household price. Note that in fric-
tionless case δ∗ was important to determine price as well.
Finally, the endogenous discount rate informs about the curvature of the value function.
Envelope condition relates σ(·) inversely with marginal reservation value. Since σ(·) is
first decreasing for lower δ, reservation value is convex, and for higher δ, reservation
value is a concave function. δ∗ is an inflection point, representing a marginal change in
how households value having a house relative to lack of it. Also, non differentiability
occurs only at cutoff values, and that’s where trade decisions with flipper affect σ(·).

Price schedules. Figure 5 presents price schedules for each quantile of household buy-
ers (left panel) and sellers (right) as a function of the counterparty’s type. The highest
quantile of buyers can pay more than other quantiles since they have bought the house
the most. The higher the type of seller they will meet, the higher the price they will pay.
Note that the lower the quantile, the closer the price schedule is. This comes from the
fact that the top quantile of sellers is below δ∗ and the convexity of the reservation value.
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Similarly, the top quantile of sellers has the highest price schedule since it accepts only
high-type buyers compared to the other quantiles.

Figure 5: Price schedule with Household vs Household trade
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Note: The price schedules for each quantile of household buyers and sellers illustrate how transaction prices
adjust based on the counterparties’ types. For sellers, the schedule starts at their own delta and increases
with the buyer’s delta, reflecting their preference for higher offers from high-type buyers. Similarly, for
buyers, the schedule begins at their delta and rises as the seller’s delta increases, indicating a willingness to
pay a premium for houses held by high-type sellers.

Misallocation. The model allows us to characterize distributional misallocation by defin-
ing for each interval [0, δ] mass of households allocated different quantity of housing
assets than in a frictionless economy:

M(δ) =
∫ δ

0
1{δ′ < δ∗}dH(1, δ′) +

∫ δ

0
1{δ′ ≥ δ∗}dH(0, δ′)

This measure captures how many households own a house in an economy with friction to
those who don’t own it in a frictionless economy (first term) and how many households
don’t own a house in an economy with search friction to those who would in a frictionless
economy (second term).
The left panel of Figure 6a shows misallocation density defined as a derivative of misal-
location with respect to deltas. We note that misallocation is concentrated right below δ∗

and we mostly contribute it to homeowners.
But across the whole distribution of private types, it is nonnegligible.

Welfare cost of search friction. To assess the severity of search friction, I use the dif-
ference between the welfare of households up to delta and its frictionless counterpart.
Moreover, I can express deviation from frictionless value for each type. Welfare cost of
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Figure 6

(a) Misallocation density
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(b) Density of welfare cost of search friction
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Note: The left panel illustrates the density of misallocation, defined as the derivative of the misallocation
measure M(δ) with respect to private types, δ. Misallocation is concentrated around δ∗, indicating that
a significant portion of homeowners is in the wrong asset position versus a frictionless economy. The
right panel shows the density of welfare costs due to search frictions, highlighting how frictions impact
households across the distribution of private types, with higher types incurring most of the search friction.

search of household up to δ, S(δ) is equal to:

S(δ) = ∑
q

∫ δ

0
V(q, δ′)dH(q, δ′)− ∑

q

∫ δ

0
VF(q, δ′)dHF(q, δ′)

The right panel of Figure 6a shows its density, which turns out to be increasing in types.
It is homeowners who are the most distorted versus frictionless economy and contribute
the most on margin to this welfare cost.
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5 Experiments

This section explores a series of simulation-based exercises, providing insights into how
different factors influence agent behavior, price dynamics, and market outcomes. The first
result establishes that average levels of agent types (δ) among owners and non-owners re-
main stable over time in the stationary equilibrium, clustering around higher values for
owners and lower values for non-owners. Even though houses are sold from lower to
higher types, moving houses up between households, they do until the flipper becomes
the owner and resets the ladder. Secondly, I investigate agents’ behavior around trans-
action times. Event study reveals that sellers experience a drop in their δ (valuation for
holding a house) around the time of a sale, and agent types mean-revert after. This sug-
gests that trades are often triggered by temporary changes in agents’ valuations, aligning
with the intuition that agents trade when their valuations deviate significantly from the
market average.

5.1 Behavior of types

The average type level of the owner and nonowner is constant across time as shown in
panel (a) of Figure 7. In stationary equilibrium, most owners have a high delta, while
non-owners are at a lower level. Indeed, cross-section averages cluster around two lev-
els of deltas—lower for non-owners (red) and higher for owners (blue). Simulating the
decentralized model allows tracking the type of owner of each house over time. Delta of
the owner of exemplum house nr 5 at the moment of transaction is presented on panel
(b) of Figure 7. The model does not admit the property of houses owned by higher deltas
over time 15. It is true that as long as houses pass between households, a chain of bilateral
transactions puts them in the hands of higher-delta households. However, the owner’s
delta evolves on its own and may deteriorate over time. Secondly, once the house is trans-
acted with a flipper, the chain of deltas breaks and starts at extreme delta values where
trade with the flipper is only active—effectively resetting the whole ladder.

5.2 Types around the date of transaction

Another property of the model is that δ falls (increases) upon trade time for sellers (buy-
ers) and means revert. In Figure 8, I conduct an event study of the average change in δ

around transaction in houses for various types of households- buyers and sellers (panel

15Property of job ladder exploited search models in labor literature like from Cahuc et al. (2006)
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Figure 7

(a) Average δ of Owners and Nonowners over
time
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(b) δ of the buyer of the house nr 5 at time of
transaction
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Panel (a) shows the average δ level of owners (blue) and non-owners (red) remains constant over time,
clustering around higher values for owners and lower for non-owners in stationary equilibrium. Panel (b)
shows δ of the buyer of house nr 5 at the time of transaction shows that while bilateral trades tend to place
houses with higher-δ households, the owner’s δ can, in principle, deteriorate over time. Transactions with
flippers reset the chain of deltas to extreme values, breaking the progression.

(a) and (b) respectively)- with different types of counterparty- households or flippers (red
and blue line respectively). Using a simulation of the model, I identify households that
traded at time t and center that event. Following households engaged in trade at time
t, I trace the type of that agent backward and forward, and I calculate the average type
level δ. It is important to distinguish three events that can happen at any point in time
but can’t happen at once: change of δ, meeting household, or meeting flipper. On the
right (left) panel, the seller’s (buyer’s) valuation is the lowest (highest) at the time of the
trade t, decreasing (increasing) the most for the household that ends up trading with the
flipper at that time. Low delta shock increases the chances of selling to households. A
very low delta makes the trade to Flipper possible. Since trade happens at t, no change
in δ occurred then. An agent who just sold t at the time would have changed his type to
t − dt or before. Similarly, after selling at t, the agent becomes a potential buyer t + dt,
with some fraction of the agents experiencing shocks to their delta, some meeting seller
households or flippers. Overall, making time t + dt group at a higher level of δ on av-
erage than at transaction time. Also, the non-owner at t + dt with a low δ level carried
from t has a relatively high chance of meeting a trading partner - this time, the seller. In
a similar fashion, changes in delta follow for dt, 2dt, . . . . This exercise suggests that trade
is triggered temporarily and that the type experiences a faster change of type before the
trade than after. Overall, moving from the average buyer (seller) type to the average seller
(buyer) type takes nontrivial time and depends on the counterparty.

35



Figure 8: Average Types around Transaction Dates
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(b) Seller
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Panel (a) shows average δ for buyers before and after trade, differentiated by counterparty—households
(red line) or flippers (blue). (b) Similar analysis for sellers. δ decreases for sellers and increases for buyers at
the time of trade, with faster changes occurring before the transaction than after. Transactions with flippers
are associated with more significant changes in δ, while trades between households involve more gradual
adjustments. Following a sale at time t = 0, a seller’s δ increases for later periods, whereas buyers with low
δ after trade at t have a higher chance of finding a seller.

5.3 Main Counterfactual Exercises

In this exercise, I analyze the impact of increasing the fraction of flippers, f , to align with
the observed changes in the fraction of flipped transactions in 2012 and 2021. The changes
of moments of price distribution, quantities, return, and time are in Table 9. By increas-
ing f we increase both masses F(0), F(1), change distribution H, affect prices P∗

0 , P∗
1 , P,

cutoffs and corresponding value functions. On theoretic grounds, it is hard to disentan-
gle the forces, something we were able to do in the case of the simplified model. As the
fraction of flippers rises, we observe that mean price and variance have decreased. The al-
most doubling of the mass of intermediaries implies negative price spillovers of 1.5%. The
mean price of the average house increased by 68% between 2012 and 2021. That suggests
that such an increase wasn’t caused by flipping activity; the effect of flippers on house
prices was quite the opposite. Those agents are infinitesimal, don’t coordinate their price
decisions, and compete against each other and households. Due to more available inter-
mediation household-household trade decreased by almost 8%. Accounting for the surge
of flipper-household trade, total trade increased by 5%. While inter-household trade was
crowded out by more intense intermediation, overall trade increased. Turnover increased
by 5% and returns increased by almost 1%. Motivated households had to wait a shorter
time to trade in housing assets, flippers were less selective. Cutoffs moved more to ex-
treme sides of types distribution, and inaction region expanded, making ex-post returns
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on flipping higher.

Table 9: Results of counterfactual increase of f - Prices and Quantites

Variable % Change

Mean Price -1.51
Var Price -0.31
HH Trade -7.95
Total Trade 5.16
Return 0.99
Turnover 5.16

Note: This table displays the effects of increasing the fraction of flippers, f , on key moments of the housing
market. As f rises, both mean and variance in prices decline, with a negative price spillover effect of -1.5%.
The shift in market dynamics also leads to a crowding-out effect on household-to-household trade while
increasing total trade and turnover by over 5%, along with a modest rise in returns on flipping.

Table 10 decomposes changes in welfare from more intermediation, measured in con-
sumption certainty equivalent between different groups of agents. Flippers experienced
a significant drop in welfare due to more competition between them. Non-homeowners’
current welfare increased by a substantial 3% while homeowners’ current welfare in-
creased by 0.34%. More intermediation will improve the trade options of non-owners
by easing search frictions. Even though those groups’ welfare improves due to more,
overall welfare decreases by 0.2%. This is because the composition of homeowners and
non-owners changes between scenarios. The change in owner distribution combined with
a high level of value function for owners will generate most of this overall negative effect
since, with more flippers, there are fewer household owners.

Even though more houses are in the hands of flippers, due to general equilibrium effects,
house allocation is less inefficient. Misallocation is measured in the mass of agents in
the wrong asset position vis a frictionless economy. Table 10 reports on total change de-
composes it between current owners and non-owners. Changes in misallocation are in
line with changes in welfare. Though welfare considers all distribution of agents of each
asset position integrated over δ’s misallocation, it looks at part of this endogenous mass.
More intermediation relaxes misallocation along the whole distribution of households by
5% and for non-owners by 7% and for owners by 3%. This means that there are more
nonowners with type above δ∗ and fewer homeowners with type below δ∗.
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Table 10: Results of counterfactual increase of f - Welfare and Misallocation

Variable % Change

Welfare pc

Total -2.44
Households -0.20
Homeowners 0.34
Non-Homeowners 3.02
Flipper -23.43

Misallocation

Total -5.22
Owners -3.03
Non-Owners -7.36

Note: This table presents the welfare and misallocation effects of increasing the fraction of flippers, f ,
measured in consumption certainty equivalents. Increased competition leads to a welfare drop for flippers,
while non-homeowners see a 3% rise and homeowners a 0.34% rise, highlighting the benefits of reduced
search frictions. Despite improvements for these groups, overall welfare declines by -0.2% due to a change
in the composition of homeowners and non-owners. Misallocation is reduced by 5% overall, with reduc-
tions of 7% for non-owners and 3% for owners, indicating better asset allocation across the household
distribution.

5.4 Effects of change in λ

In this section, we explore the impact of varying the meeting rate λ as an alternative to
changing the fraction of flippers f . This comparative statics exercise is grounded in the
OTC literature, where the meeting rate λ is adjusted to study its effects on intermediation.
Keeping meeting rates of flippers λF(0) and λF(1) with the previous exercise, so such
intermediation has fixed contact rates between flipper and household.

Table 11 highlights the contrasting effects of increasing the meeting rate λ versus raising
the fraction of flippers f . An increase in λ reduces mean price variation more significantly
than an increase in f , indicating that a higher meeting rate improves price stability by fa-
cilitating faster trades. While both parameters boost total trade, λ does so more effectively,
emphasizing the flippers’ role as intermediaries and slightly reducing household-only
trades. Welfare effects are also divergent: a higher λ yields a substantial welfare increase
for flippers (147%), unlike f , which reduces their welfare due to heightened competition.
This suggests that increasing λ enhances liquidity without over-saturating the flipper
market, while a higher f introduces competition that limits flipper welfare. Households
benefit modestly from a higher λ, but non-homeowners experience a welfare reduction,
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Table 11: Comparison to equivalent change in λ

Variable % Change
Change in f Change in λ

Mean Price -1.51 -1.47
Var Price -0.31 -3.54
HH Trade -7.95 -13.56
Total Trade 5.16 6.67
Return 0.99 1.39
Turnover 5.16 6.67

Welfare pc

Total -2.44 1.34
Households -0.20 0.17
Homeowners 0.34 0.43
Non-Homeowners 3.02 2.49
Flipper -23.43 147.15

Misallocation

Total -5.22 -8.42
Owners -3.03 -7.28
Non-Owners -7.36 -9.54

Note: The table compares outcomes from changes in the flipper fraction f and meeting rate λ, showing that
increasing λ yields substantial welfare gains for flippers and sharp price adjustments, contrasting with the
effects of increasing f alone.

potentially facing entry barriers. Finally, both changes reduce misallocation, with λ being
more efficient in aligning housing transfers to demand, underscoring its role in improving
market dynamics beyond competition alone.

5.4.1 Price Growth

While the primary focus of the counterfactual exercises is on understanding the role of
intermediaries like flippers, it is also crucial to examine whether the model can capture the
substantial increase in house prices observed between 2012 and 2021. Table 12 presents
the results of this analysis by comparing changes in key parameters—specifically, r (the
discount rate) and f (flippers’ activity)—to assess their impact on price growth and the
composition of trade over time. The table is structured into three sets of columns: the
first two columns show the baseline estimation results for 2012, which serve as a reference
point. The following two columns report the moments implied by the 2021 discount rate r
while keeping the 2012 value of f unchanged. This scenario isolates the effect of changes
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Table 12: Results of change in both f and r

s, γ, λ, ρ at 2012

r, f 2012 f 2012, r 2021 r, f 2021

Data 2012 Model Data 2021 Model Data 2021 Model

Fraction of Flipped 4.56% 4.81% 8.05% 4.97% 8.05% 8.28%

Average Price 11.42 11.62 16.78 16.83 16.78 16.66

Return on Flipping 1.29 1.27 1.32 1.19 1.32 1.20

Turnover 5.59% 2.54% 5.79% 2.54% 5.79% 2.69%

Note: This table aims at explaining price growth observed in data explained by the change in both f and
r. The first two columns display the baseline estimation results for 2012. The next two columns show the
moments implied by r, derived solely from the 2021 data while keeping the other parameters unchanged.
In the final two columns, we used f from the main counterfactual and r obtained exclusively from the 2021
data. This last part is based on changes in r indicated by the data and does not involve re-estimating f .

in the discount rate on market outcomes. The final two columns incorporate both the
updated r from 2021 and the adjusted f parameter derived from the main counterfactual
scenario, which reflects the increased flipper activity in 2021. The primary driver of price
changes is the adjustment in r. As the cost of consumption decreases, the price of an asset
in terms of consumption goods increases. Changes in f have a more nuanced impact and
was discussed above. The rise in the discount rate r from 2012 to 2021 aligns closely with
the observed increase in average house prices, as evidenced by the match between the
model and data values in the columns focusing on 2021. Adjusting r alone does little to
explain the increase in the fraction of flipped transactions; a higher f value in the final
two columns captures the rise in flipping activity seen in the data. The share of flipped
transactions increases from 4.81% in the baseline model to 8.28% when the 2021 values of
both r and f are applied, mirroring the observed increase in flipped transaction share to
8.05%.

5.5 Policy - sales tax on flippers

The policy of interest is a sales tax on houses, taxing the sale of properties not used as the
primary residence. Before 2011, Ireland imposed a 9% sales tax on such properties, which
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had a notable impact on flipped transactions 16. Using our model, we analyze the effects
of tax on flipping activity, house prices, trade volumes, and welfare outcomes. Best to my
knowledge, this is the first analysis of this type of tax policy in the context of the search
model.

As shown in Table 13, the introduction of a 9% sales tax leads to a substantial decrease in
flipping activity—nearly 55% of trades facilitated by flippers disappear, accounting for a
53% reduction in welfare per flipper. The results show that such a tax significantly curtails
the number of flipped transactions, leading to a decrease in total trade volume. While
this policy mitigates the crowding out of household trades, it comes with a downside:
the welfare gains for non-owners are reversed, and average transaction times increase,
which can stifle the overall market recovery. The tax reduces the competition between
households and flippers, partially alleviating the crowding out effect, where households
were previously outcompeted by faster-moving flippers. However, the impact of taxes is

Table 13: Effects of Sales Tax on Flipping τ = 0.09

Variable % Change

Mean Price 0.71
Var Price 4.51
Flipper Share -54.81
HH Trade 3.60
Total Trade -3.30
Return 4.59
Turnover -3.30

Welfare pc

Total -0.43
Households -0.01
Homeowners -0.22
Non-Homeowners -1.88
Flipper -53.32

Misallocation

Total 2.77
Owners 1.82
Non-Owners 3.69

Note: Results reflect the impact of a 9% sales tax on flipping activity, showing reductions in flipping trans-
actions and welfare changes across groups.

16examples of other countries imposing taxes on fast trade: Germany: traded up to 10 years, 14-45% rate,
Canada: 1 year, 15-33%, Singapour: 3 years, 12%, Hong Kong : 3 years 20%
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mixed. While the crowding-out of households diminishes, the welfare gains previously
observed among non-homeowners reverse, as increased transaction times make it harder
for them to enter the housing market. Even though the tax rate is substantial, the overall
effect on the welfare of all households is diminutive. Homeowners experience a slight
decrease in welfare, while non-homeowners face a more significant loss of nearly 2%.

Results in this section should be interpreted with caution, as the policy experiment is
intentionally simplified. It does not account for broader government interventions or
potential market adjustments that could occur in response to the tax. For example, the
model does not allow for flippers’ decisions to enter or exit the market as a reaction to the
policy change, potentially underestimating the total effect on trade volume and market
dynamics.
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6 Robustness and Validation

6.1 Alternative definitions of flipping

Figure 9 considers different definitions of the time window between two leg transactions
to identify flipped transactions. The left panel shows levels of flipping across time for
different time differences between transactions - 1 year (blue), 2 years (red), and 4 years
(black). For either of those definitions, we observe an increase in the fraction of flipped
trades across the sample. The right panel presents a pdf of time differences between mul-
tiple trades (as a function of time on the x-axis). The red dotted line marks the time def-
inition of flipping between trades used in the main body of this paper. That distribution
spikes at 1 year (blue) and has bunches at 4 years (green).

Figure 9: Different time definitions of flipping

(a) Time trends

(b) PDF of all multiple trades

Note: Left panel shows levels of flipping across time for different time differences between transactions - 1
year (blue), 2 years (red), and 4 years (black). For either of those definitions, we observe an increase in the
fraction of flipped trades across the span of the sample. The right panel presents a pdf of time differences
between multiple trades (as a function of time on the x-axis). The red dotted line marks the time definition
of flipping between trades used in the main body of this paper. That distribution spikes at 1 year (blue) and
has bunches at 4 years(green).

Table 14 explores the outcomes of defining flipping with different time windows between
transactions (1, 2, and 4 years). Under a 1-year definition, the model estimates a lower
flipping share but a high return on flipping, reflecting the fast turnover characteristic of
short-term trades. The baseline 2-year definition aligns closely with observed data in
terms of flipping share and return, indicating it captures typical market dynamics. Ex-
tending the window to 4 years increases the flipping share, as more transactions are clas-
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Table 14: Alternative definitions of flipping

1 year 2 years (baseline) 4 years

f 0.009 0.0021 0.013
γ 0.09 0.07 0.09
ρ 0.3 0.3 0.3
λ 3.0 3.0 5.0

Model Data Model Data Model Data

Fraction of flipped 2.53% 2.44% 4.81% 4.56% 9.27% 9.75%
Mean price 11.98 12.88 11.62 11.42 11.85 12.54
Return on flipping 122.73% 111.29% 126.96% 129.33% 123.35% 151.41%
Tenure time 2.72% 5.59% 2.54% 5.59% 2.86% 5.59%

Loss function 0.28 0.30 0.28

Main Counterfactual % Change

Mean Price -2.34 -1.51 -2.53
Var Price 0.70 -0.31 -0.07
Flipper Share 240.90 67.42 104.13
HH Trade -10.28 -7.95 -16.50
Total Trade 10.62 5.16 12.50
Return 0.90 0.99 1.45
Turnover 10.62 5.16 12.50

Welfare pc
Total -3.38 -2.44 -2.58
Household -0.41 -0.20 -0.52
Homeowners 0.38 0.34 0.54
Non-Homeowners 5.49 3.02 5.53
Flipper -29.41 -23.43 -32.67

Misallocation
Total -7.16 -5.22 -10.51
Owners -4.18 -3.03 -6.59
Non-Owners -10.02 -7.36 -14.34

Note: Table contains alternative time windows for defining flipped transactions. For 1 year (2 years; 4
years) definition between trades, model was estimated to target 2011 (2012; 2014) moments from data.
Counterfactual was done for 1 year (2 years; 4 years) to match share of flipped transactions in 2022 (2021;
2019).

sified as flips, inflating the return due to lengthier hold periods. However, misallocation
decreases as longer hold times allow assets to settle with end-users, enhancing distri-
bution efficiency. Price changes reflect the increased competition among flippers; shorter
definitions correlate with a slight price reduction, while the 4-year window shows greater
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price stabilization. The model’s loss function remains stable across definitions, suggesting
robustness to changes in flipping criteria.

Table 15: Untargeted moment: prices and intermediation

1 Years 2 Year 4 Years
Data

Year 2011 2012 2014
β -0.19 -0.21 -0.08

Model
β -0.22 -0.29 -0.15

Note: The table presents results of regression from Table 7 applied to various definitions of flipping. Simu-
lated data was run for T = 100 periods, burn in 20 periods with N = 10000 number of households

Table 15 presents untargeted moments for price responsiveness (β) across different flip-
ping windows (1, 2, and 4 years). For each year, the model’s β aligns closely with data,
though slightly overestimating the price effect, particularly in the 2-year baseline. The
results imply that price responsiveness to flipping intensity is stable across definitions,
yet with a decreasing effect as the window extends. This suggests that short-term flips
exert more competitive pressure on prices than long-term flips, as longer holding periods
reduce intermediary turnover. Consequently, the model effectively captures both the di-
rect effect of flipping on prices and the moderation of this effect with increased holding
periods, indicating its ability to generalize across flipping definitions.

6.2 Role of distribution of types

Figure 10 presents the cumulative distribution of prices for various values of δ̄- an upper
bound of exogenous distribution of types G ∼ U[0, δ̄]. Other parameters of the model
are as in the baseline calibration of the model. In baseline δ̄ = 1. For uniform distribu-
tion changes in mean ( δ̄

2 ) and variance ( δ̄2

12 ) are inseparable. Decreasing δ̄ decreases both
the mean and variance of G, and as a result, it decreases the mean and variance of the
distribution of prices in the model. Changes in G are proportional to changes in price
distribution, which comes from linear flow utility.

Table 16 presented results from a simulation of regressing prices on types of agents in
the transaction: δ type of buyer and seller with a dummy variable for the flipper. Linear
regression is a good fit even though types are unobservable to econometrician. Prices are
increasing in types of buyer and seller, with a stronger effect on buyers.
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Figure 10: Role of distribution of types G
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Notes: Cumulative Distribution of Prices for Different Values of δ̄. Figure 10 shows the cumulative distri-
bution of prices for various upper bounds δ̄ of the exogenous type distribution G ∼ U[0, δ̄]. As δ̄ decreases,
both the mean ( δ̄

2 ) and variance ( δ̄2

12 ) of G decrease, leading to a corresponding decrease in the mean and
variance of the price distribution. The changes in G proportionally affect the price distribution due to the
linear flow utility structure of the model. The baseline model uses δ̄ = 1.

Table 16: Regression of prices on types

Variable Estimate

Constant 8.96
Buyer δ 3.2
Seller δ 2.9
Flipper 0.64
R2 0.987

Note: Prices are increasing in types of buyer and seller, with a stronger effect on buyers. Linear regression
is a good fit even though types are unobservable to econometrician.

6.3 Role of private information

Consider an alternative price-setting mechanism in which the flipper observes the val-
uation of the household he trades with. The surplus in this trade is split via Nash Bar-
gaining, with flipper weight θ ∈ (0, 1). Price this way depends on the type of household,
and there exists one cutoff δ̂ above which households sell and below which they buy.
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Inter-household trade is split 50-50. I relegate to the appendix J for details of that model.
Figure 11 shows the mean price (left panel) and consumption equivalent of households
(right panel) as a function of bargaining weight. The model was resolved for various
values of θ for baseline calibration from Section 4. Prices are lower than in the baseline
model. An extreme case in which all bargaining power is on the side of the household
means that the price in trade with the flipper is independent of δ and equal to full surplus
from the flipper. Prices are increasing in the bargaining power for the remaining consid-
ered values. The right panel of Figure 11 shows consumption equivalent of household
consumption, a decreasing function of the bargaining power. The higher the bargaining
weight, the more price extracts surplus of household, making households worse off. In
extreme cases in which the flipper has no ability to extract any type of specific surplus,
prices are lower than in the model with the flipper targeting the cutoff agent. There exists
high θ, the observable type model and baseline model coincide in welfare but the price is
always lower.

Figure 11: Role of private information
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Note: Alternative price setting protocol in which the flipper observes the type of household, with θ bargain-
ing power on the flipper, with ex-post trade bargaining. The figure shows prices (left) and consumption
equivalent of households (right) across bargaining weights.
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7 Conclusion

This paper investigates the role of flippers as intermediaries in the decentralized housing
market, focusing on their impact on prices, trade volume, and welfare. By developing a
decentralized trade model calibrated to universe transaction data from Ireland, I find that
increased flipping activity, contrary to common beliefs, can decrease average house prices
and increase trade. An increase in the number of intermediaries reduces misallocation,
which can benefit certain groups, particularly non-owners, through improved access to
housing. However, the presence of flippers also shifts the allocation of housing, reducing
overall welfare slightly due to the hold-up of houses by new flippers. Policy experiments
reveal that a sales tax on flippers, similar to a pre-2011 Irish policy, significantly reduces
flipped transactions but also increases market frictions, reversing some of the welfare
gains for non-owners. The findings underscore the trade-offs between improved mar-
ket efficiency due to intermediary activity and the potential welfare costs arising from
changes in housing allocation. Finally, this study contributes to the literature on search
frictions and market intermediation by highlighting how intermediaries like flippers in-
fluence not only price dynamics but also the overall welfare distribution among market
participants of different types.

Future work should include agent decisions about quality improvements of a house,
which is challenging since such information is limited to small samples and not infor-
mative about the whole housing market.
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Appendix

A Derivation of the model

Timing Morning t: Household (q, δ) wakes up with asset position q ∈ {0, 1} and type δ ∈ [0, 1].

1. price is offered P1−q

2. λ trade opportunity arrives 17.

3. conditional on meeting accept/reject prices A(δ, q; P)

4. γ shock to type arrives

5. payoffs are realized: flow is paid qδ∆

6. evening discounts with e−r∆

7. move to t + ∆

length of time between day shrinks, ∆ → 0.

History of shocks γ, λ can be recovered from (δ, q).
Notation Household of type (q, δ) conditional on vector of prices P = {P0, P1} decides about A :

(q, δ; P1−q) → {A, R}. Flipper of type q conditional on decision rule A = {{A(1 − q, δ; Pq)}δ∈G}
decides price Pq

Let’s define Symmetric Stationary Markov Perfect Equilibrium (without cutoffs)

Definition 5 (Symmetric Stationary Markov Perfect Equilibrium). consists of

1. value functions V : (q, δ; P1−q) → R, W : (q; A) → R

2. decision rules A(q, δ; P1−q) → {A, R}

3. prices P : (q; A) → R+

4. distributions : H : (q, δ) → R, F : (q) → R

• Given prices P : value functions V and A solve household problem (given by HJB equation below)

• Given decision rule of hh A : value functions W and prices P solve flipper problem (given below)

• Low of motions hold, Accounting hold
17γ, λ independent with each other and exponential
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Household’s problem Household of type (δ, q) conditional on vector of prices P = {P0, P1} and

decides about A : (q, δ; P1−q) → {A, R} by solving

V(q, δ; P1−q) = max
A∈{A,R}

qδ∆ + γ∆(1 − λ∆)
∫ 1

0
Vt(q, δ′; Pt)dG(δ′)+

+(1 − γ∆)λ∆ max{e−r∆V(q, δ; P1−q)︸ ︷︷ ︸
A=R

,

(2q − 1)P1−q + e−r∆V(1 − q, δ; P1−q)︸ ︷︷ ︸
A=A

}+]

+(1 − γ∆)(1 − λ∆)e−r∆V(q, δ; P1−q)+

+γ∆λ∆
∫ 1

0
max{e−r∆V(q, δ′; P1−q)︸ ︷︷ ︸

A=R

,

(2q − 1)P1−q + e−r∆V(1 − q, δ′; P1−q)︸ ︷︷ ︸
A=A

}dG(δ′)]

Define ∆V(δ; P) = Vt(1, δ, 1; P0)− V(0, δ; P1). Subtract e−r∆V(q, δ; P1−q), divide by ∆ to get:

1 − e−r∆

∆
V(q, δ; P1−q) = max

A
qδ + e−r∆ V(q, δ; P1−q)− V(q, δ; P1−q)

∆︸ ︷︷ ︸
0

+e−r∆[γ(1 − λ∆)
∫ 1

0
[V(q, δ′; P1−q)− e−r∆V(q, δ; P1−q)]dG(δ′)+

+(1 − γ∆)λ max{0, (2q − 1)[P1−q − e−r∆∆V(q, δ; P1−q)]}+ o(∆)]

Flipper’s problem Given decision rule of agents A Flipper of type q chooses Pq to solve

W(q; A) = max
Pq

λ∆
∫ 1

0
1[δ : A(1 − q, δ, Pq) = A]·

·max{(2q − 1)P + e−r∆W(q; A), e−r∆W(1 − q, A)}dH(1 − q, δ)

+o(∆) + o(∆)

becomes
1 − e−r∆

∆
W(q, A) = max

Pq
λ∆

∫ 1

0
1[δ : A(1 − q, δ, Pq) = A]·

·max{0, (2q − 1)[Pq + e−r∆∆W(q, A))}dH(δ, 1 − q) + o(∆) + o(∆)
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Envelope Define a cutoff δ∗q :

δ∗0 (P1) = inf{δ : A(0, δ; P1) = A}

δ∗1 (P0) = sup{δ : A(1, δ; P0) = A}

The existence of cutoff comes from the monotonicity of ∆V (shown in the proof of existence). Use

continuity of ∆V (proved later on) at cutoffs to notice that:

P1−q =
δ∗q (P1−q) + γ

∫ 1
0 ∆V(δ′)dG(δ′)

r + γ

Because there is no trade at each cutoff, together:

P1 − P0 =
δ∗0 (P1)− δ∗1 (P0)

r + γ

Cutoffs are differentiable and:

δ∗′0 (P1) = δ∗′1 (P0) = r + γ

From the definition of cutoff as indifference between trade and no-trade:

P1−q = e−r∆∆V(δ∗q (P1−q))

Suppose that ∆V is differentiable at cutoff 18 and differentiate wrt P1−q

1 = e−r∆ ∂

∂δ
∆V(δ∗q (P1−q))

d
dP

δ∗q (P1−q)

impose stationary and take limit ∆ → 0

1 = ∆V ′(δ∗q (P1−q)) · δ∗
′

q (P1−q))

18it is not! it would be argued later
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B Proof of Proposition 1 and 2

Assume f < s < 1. The proof is constructive and has three parts:

1. ∀δ1(P0) < δ0(P1) cutoffs there is unique stationary distribution, i.e.:

(a) ∃!F(1), dH(1, δ)

(b) 0 ≤ F(1) ≤ f

(c) 0 ≤ dH(1, δ) ≤ δ̄

(d) dH(q, δ), F(q) are monotone in δ1(P0), δ0(P1)

2. ∀F(1), dH(1, δ), δ1(P0) < δ0(P1) stationary distr. and cutoffs there are unique value func-

tions V(·, ·), W(·):
(a) ∃!∆V(·)
(b) ∃!W(1), W(0)

(c) ∃!V(1, ·), V(0, ·)
(d) ∆V is increasing, bounded, continuous functions with non-differentiability only at cut-

offs.

(e) V(q, ·), W(q) are monotone in δ1(P0), δ0(P1), F(q), dH(q, ·)

3. ∀∆V strictly increasing, piecewise linear value functions ∀W(1), W(0) exist cutoffs δ0(·), δ1(·)
(a) ∃!δ1(P0) = ∆V(δ1(P0)), δ0(P1) = ∆V(δ0(P1)).

(b) δ1(P0) < δ0(P1)

(c) P1 − P0 = δ0(P1)−δ1(P0)
r+γ = δ̄

2(r+γ)

Proof of the existence of Markov Perfect Equilibrium follows the fixed point argument. (1) defines

operator H(D) mapping from cutoffs to stationary distributions, (2) defines V(H, D) mapping

from distributions and cutoffs to value functions, (3) defines D(V, H, D) mapping from value

functions, distributions, and cutoffs to set of cutoffs. Equilibrium is a fixed point D of operator

T : [0, 1]2 → [0, 1]2

D = T(D) = D(V(H(D), D),H(D), D)

B.1 H(D).

Differentiate (xyz) (use dH as pdf - abuse dδ notation):

dH(0, δ) + dH(1, δ) = G′(δ) =
1
δ̄

δ ∈ [0, δ̄]
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Rearrange and differentiate (8) to get

1{δ ≥ δ∗0}[λF(1) dH(0, δ)︸ ︷︷ ︸
1
δ̄
−dH(1,δ)

] + γ G′(δ)︸ ︷︷ ︸
1
δ̄

∫ δ̄

0
dH(1, δ)︸ ︷︷ ︸
s−F(1)

= 1{δ ≤ δ∗1}[λ F(0)︸︷︷︸
f−F(1)

dH(1, δ)] + γdH(1, δ) (14)

Rearrange to get

dH(1, δ) =
λF(1)1{δ ≥ δ∗0 (P1)}+ γ(s − F(1))

λ( f − F(1))1{δ ≤ δ∗1 (P0)}+ γ + λF(1)1{δ ≥ δ∗0 (P1)}
(15)

Then dH(1, ·) given cutoffs is a piecewise constant function of the delta on three intervals given

by cutoffs:

dH(1, δ) =


1
δ̄

γ(s−F(1))
λ( f−F(1))+γ

ifδ ∈ [0, δ1(P0)]

1
δ̄
(s − F(1)) ifδ ∈ (δ1(P0), δ0(P1))

1
δ̄

λF(1)+γ(s−F(1))
γ+λF(1) ifδ ∈ [δ0(P1), δ̄]

Use Law of Motion applied to δ = δ̄ flipper trade condition:

F(1)
∫ δ̄

δ∗0 (P1)
dH(0, δ) = F(0)

∫ δ∗1 (P0)

0
dH(1, δ) (16)

applied to dH(0, δ) constant on [δ∗0 (P1), δ̄] and dH(1, δ) constant on [0, δ∗1 (P0)]interval:

F(1)(δ̄ − δ∗0 (P1))dH(0, δ∗0 (P1)) = F(0)δ∗1 (P0)dH(1, δ∗1 (P0))

define

g(x) = x(δ̄ − δ∗0 (P1))(1 − s + x)(λ( f − x) + γ)− ( f − x)δ∗1 (P0)(s − x)(λx + γ)

g(0) = − f δ∗1 (P0)sγ < 0

g( f ) = f (δ̄ − δ∗0 (P1))(1 − s − f )γ > 0

g(x) < 0 ∀x > max{s, s +
γ

λ
}

g(x) > 0 ∀x < min{s − 1,−γ

λ
}

Since g is a third-degree polynomial in x, from the Intermediate Value Theorem, there is exactly

one F(1) on (0, f ).
What is left is to show that 0 < dH(1, δ) < 1

δ̄
δ ∈ [0, δ̄].

From 0 < F(1) < f < swe get 0 < dH(1, δ) in all three cases.
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Case 1:δ ≤ δ∗1 (P0) dH(1, δ) < 1
δ̄
: s < 1 < 1 + F(1) ⇐⇒ 0 < γ(1 − s + F(1)) + λ( f − F(1))

Case 2:δ∗1 (P0) < δ < δ∗1 (P0) dH(1, δ) < 1
δ̄
: (s − F(1)) ⇐⇒ 0 < F(1) < f < s

Case 3: δ∗0 (P1) ≤ δ dH(1, δ) < 1
δ̄
:0 < γ(1 − s + F(1)) ⇐⇒ s < 1 < 1 + F(1))

Lemma 1. dH(0, δ), F(1) are increasing in δ1(P0)

Proof. Define

G1(x, y) = x(δ̄ − y)(1 − s + x)(λ( f − x) + γ)− ( f − x)δ∗1 (P0)(s − x)(λx + γ)

From Implicit Function Theorem:
dF(1)

dδ∗0 (P1)
= −dGy

dGx

dGy = −x(1 − s + x)(λ( f − x) + γ) < 0 at x = F(1).
Note that G(x, δ∗0 (P1)) = g(x) and g(x) is increasing on (0, f ) thus dGx > 0. Thus F(1) is increas-

ing in δ∗0 (P1).

When we increase δ∗0 (P1), two things happen to dH(1, δ): the level of pdf changes, and the first

case area expands. In each of three cases dH(1, δ) is decreasing function of δ∗0 (P1) since it decreases

in F(1). Thus dH(0, δ) = 1
δ̄
− dH(1, δ) is increasing in δ∗0 (P1).

B.2 V(H, D)

Household’s problem for a given F(1), F(0), δ∗0 (P1), δ∗1 (P0) using reservation value ∆V(δ) := V(1, δ)−
V(0, δ) can be written as:

rV(0, δ) = γ
∫ δ̄

0
[V(0, δ′)− V(0, δ)]dG(δ′) + λF(1)1[δ ≥ δ∗0 (P1)][P1 + ∆V(δ)] (17)

rV(1, δ) = δ + γ
∫ δ̄

0
[V(1, δ′)− V(1, δ)]dG(δ′) + λF(0)1[δ ≤ δ∗1 (P0)][P0 − ∆V(δ)] (18)

Define

σ(δ) = r + γ + λF(1)1[δ ≥ δ∗0 (P1)] + λF(0)1[δ ≤ δ∗1 (P0)]

Subtract V(0, δ) from V(1, δ) to get

∆V(δ) =
δ

σ(δ)
+

γ

σ(δ)

∫ 1

0
∆V(δ′)dG(δ′)+

λF(1)1[δ ≥ δ∗0 (P1)]

σ(δ)
∆V(δ∗0 (P1))+

λF(0)1[δ ≤ δ∗1 (P0)]

σ(δ)
∆V(δ∗1 (P0))

To show existence of ∆V(δ) define operator T:

T f (x) =
x

σ(x)
+

γ

σ(x)

∫ 1

0
f (x′)dG(δ′)+

λF(1)1[δ ≥ δ∗0 (P1)]

σ(x)
f (δ∗0 (P1))+

λF(0)1[δ ≤ δ∗1 (P0)]

σ(x)
f (δ∗1 (P0))
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For bounded function f , T f is bounded since G has bounded support.

∀ f ≤ g ⇒ T f (x) ≤ Tg(x) since

T f (x) =
x

σ(x)
+

γ

σ(x)

∫ 1

0
f (x′)dG(δ′)+

λF(1)1[δ ≥ δ∗0 (P1)]

σ(x)
f (δ∗0 (P1))+

λF(0)1[δ ≤ δ∗1 (P0)]

σ(x)
f (δ∗1 (P0)) ≤

≤ x
σ(x)

+
γ

σ(x)

∫ 1

0
g(x′)dG(δ′)+

λF(1)1[δ ≥ δ∗0 (P1)]

σ(x)
g(δ∗0 (P1))+

λF(0)1[δ ≤ δ∗1 (P0)]

σ(x)
g(δ∗1 (P0)) = Tg(x)

∀c ∈ R∃β ∈ (0, 1) ⇒ T( f + c)(x) ≤ T f (x) + βc . Explicitly

β =
γ + λF(1)1[δ ≥ δ∗0 (P1)] + λF(0)1[δ ≤ δ∗1 (P0)]

r + γ + λF(1)1[δ ≥ δ∗0 (P1)] + λF(0)1[δ ≤ δ∗1 (P0)]

T( f (x) + c) =
x

σ(x)
+

γ

σ(x)

∫ 1

0
( f (x′) + c)dG(δ′) +

λF(1)1[δ ≥ δ∗0 (P1)]

σ(x)
( f (δ∗0 (P1)) + c)+

+
λF(0)1[δ ≤ δ∗1 (P0)]

σ(x)
( f (δ∗1 (P0)) + c) = T f (x) + βc

Blackwell conditions are satisfied, ∆V is a fixed point of T. Using equations 17 and 18 we can find

V(0, ·) and V(1, ·) given ∆V(δ) using

V(0, δ) =
γ

r + γ

∫ δ̄

0
V(0, δ′)dG(δ′) +

λF(1)1[δ ≥ δ∗0 (P1)]

r + γ
[−∆V(δ∗0 (P1)) + ∆V(δ)]

V(1, δ) =
δ

r + γ
+

γ

r + γ

∫ δ̄

0
V(1, δ′)dG(δ′) +

λF(0)1[δ ≤ δ∗1 (P0)]

r + γ
[∆V(δ∗1 (P0))− ∆V(δ)]

and confirming Blackwell conditions

Calculate reservation value in each cases

1. δ ≤ δ∗1 (P0)

∆V(δ) =
δ + γ

∫ δ̄
0 ∆V(δ′)dG(δ′) + λF(0)∆V(δ∗0 (P1))

r + γ + λF(0)

2. δ∗1 (P0) < δ < δ∗0 (P1)

∆V(δ) =
δ + γ

∫ δ̄
0 ∆V(δ′)dG(δ′)

r + γ

3. δ∗0 (P1) ≤ δ

∆V(δ) =
δ + γ

∫ δ̄
0 ∆V(δ′)dG(δ′) + λF(1)∆V(δ∗0 (P1))

r + γ + λF(1)

Notice that reservation value is continuous, increasing, and piecewise linear on relevant intervals
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with the following slopes (note that value functions are nondifferentiable at kinks) :

d∆V(δ)

dδ
=


1

r+γ+λF(0) ifδ ∈ [0, δ∗1 (P0))

1
r+γ ifδ ∈ (δ∗1 (P0), δ∗0 (P1))

1
r+γ+λF(1)) ifδ ∈ (δ∗0 (P1), δ̄]

Lemma 2. If ∆VA(δ) ≥ ∆VB(δ) ⇒ δ∗A
1 (P0) ≥ δ∗B

1 (P0)

Proof.
VB(δ∗B

1 (P0)) = P0 = VA(δ∗A
1 (P0)) ≥ VB(δ∗A

1 (P0))

B.3 D(V, H, D)

Since the reservation value is monotone, then:

P1 = ∆V(δ∗0 (P1)) =
δ∗0 (P1) + γ

∫ 1
0 ∆V(δ′)dG(δ′)

r + γ
(19)

which ensures existence of δ∗0 (P1) and expresses it as function of δ∗0 (P1). Likewise:

P0 = ∆V(δ∗1 (P0)) =
δ∗1 (P0) + γ

∫ 1
0 ∆V(δ′)dG(δ′)

r + γ
(20)

then

P1 − P0 =
δ∗0 (P1)− δ∗1 (P0)

r + γ
(21)

Differentiate cutoffs with respect to price:

δ∗′1 (P0) = δ∗′0 (P1) = r + γ

Flipper’s problem

rW(0) = max
P0

λ
∫ δ∗1 (P0)

0
dH(1, δ)[−P0 + W(1)− W(0)]

rW(1) = max
P1

λ
∫ δ̄

δ∗0 (P1)
dH(0, δ)[P1 + W(0)− W(1)]
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Note that

P1 = (1 +
r

λ
∫ δ̄

δ∗0 (P1)
dH(0, δ)

)W(1)− W(0) (22)

P0 = W(1)− (1 +
r

λ
∫ δ∗1 (P0)

0 dH(1, δ)
)W(0) (23)

Since Flipper is the one offering a price that gives him no nnegative surplus, we have

δ∗1 (P0) + γ
∫ 1

0 ∆V(δ′)dG(δ′)
r + γ

= P0 ≤ W(1)− W(0) ≤ P1 =
δ∗0 (P1) + γ

∫ 1
0 ∆V(δ′)dG(δ′)

r + γ

and δ∗1 (P0) ≤ δ∗0 (P1)

Because dH(0, δ) is constant on [δ∗0 , δ̄] and dH(1, δ) is constant on [0, δ∗1 ]interval we have

∫ δ∗1 (P0)

0
dH(1, δ) = δ∗1 (P0)dH(1, δ∗1 (P0)) = δ∗′1 (P0)dH(1, δ∗1 (P0))(−P0 + W(1)− W(0))

∫ δ̄

δ∗0 (P1)
dH(0, δ) = (δ∗0 (P1)− δ̄)dH(0, δ∗0 (P1)) = δ∗′0 (P1)dH(0, δ∗0 (P1))(P1 + W(0)− W(1))

δ∗1 (P0)

δ∗′1 (P0)
= −P0 + W(1)− W(0) (24)

δ̄ − δ∗0 (P1)

δ∗′0 (P1)
= P1 + W(0)− W(1) (25)

Now plug stuff back to original problem to get W(1), W(0):

W(0) =
λ(δ∗1 (P0)2

r(r + γ)
dH(1, δ∗1 (P0))

W(1) =
λ(δ̄ − δ∗0 (P1))

2

r(r + γ)
dH(0, δ∗0 (P1))

sum 24 and 25:
δ̄ − δ∗0 (P1) + δ∗1 (P0)

r + f
= P1 − P0 =

δ∗0 (P1)− δ∗1 (P0)

r + γ

δ̄

2
= δ∗0 (P1)− δ∗1 (P0)

so

P1 − P0 =
δ0(P1)− δ1(P0)

r + γ
=

δ̄

2(r + γ)
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B.4 D(V, H, D)

Use 20,19, 22,23 and denote E∆V :=
∫ 1

0 ∆V(δ′)dG(δ′)

δ∗0 (P1) = (r + γ)((1 +
r

λ
∫ δ̄

δ∗0 (P1)
dH(0, δ)

)W(1)− W(0))− γE∆V

δ∗1 (P0) = (r + γ)(W(1)− (1 +
r

λ
∫ δ∗1 (P0)

0 dH(1, δ)
)W(0))− γE∆V

Result 1. We can express cutoffs as function of distributions, ∆V and cutoffs only

δ∗1 (P0) = −γ

2
E∆V +

λ

2r
[(δ̄ − δ∗0 (P1))

2dH(0, δ∗0 (P1))− (δ∗1 (P0))
2dH(1, δ∗1 (P0))]

δ∗0 (P1) =
1
2
− γ

2
E∆V +

λ

2r
[(δ̄ − δ∗0 (P1))

2dH(0, δ∗0 (P1))− (δ∗1 )
2dH(1, δ∗1 (P0))]

The left-hand side defines n + 1 iteration of cutoffs, with outcomes of nth step on the right. What

is left to show is that those recursions are monotone and bounded. Observe that

δ∗1 (P0) = −γ

2
E∆V +

λ

2r
[(δ̄ − δ∗0 (P1))

2dH(0, δ∗0 (P1))− (δ∗1 (P0))
2dH(1, δ∗1 (P0))] ≤

≤ 0 +
λ

2r
[(δ̄ − δ∗0 (P1))

2 1
δ̄
− (δ∗1 (P0))

2 1
δ̄
+ (δ∗1 (P0))

2dH(0, δ∗1 (P0))] ≤
λ

4rδ̄
[δ̄ − δ∗1 (P0)]

Rearranging we get In a similar way

δ∗0 (P1) ≤
1
2
+

λ

4rδ̄
[δ̄ − δ∗0 (P1)]

To show that δ∗0 (P1) is convergent focus on inequality:

xn+1 ≤ 1
2
+ (1 − xn)

2 λ

2r
= f (xn)

Let’s find a fix point x = f (x) and assess that x ∈ ( 1
2 , 1).

x =
1
2
+ (1 − x)2 λ

2r
⇐⇒ x =

(1 + λ
r )−

√
(1 + λ

r )
2 − 4 λ

2r
1
2 (1 +

λ
r )

2 λ
2r

1
2
< x < 1 ⇐⇒ λ

2r
< (1 +

λ

r
)−

√
1 +

λ

r
<

λ

r

which is always true. Since δ∗,n
0 (P1) converges δ∗,n

1 (P0) =
1
2 − δ∗,n

0 (P1) converges as well.
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Proof. of Proposition 2.4 Note that for any G from Flipper problem∫ δ∗1 (P0)
0 dH(1, δ)

δ∗′1 (P0)dH(1, δ∗1 (P0))
= −P0 + W(1)− W(0)

∫ δ̄
δ∗0 (P1)

dH(0, δ)

δ∗′0 (P1)dH(0, δ∗0 (P1))
= P1 + W(0)− W(1))

from Household problem δ∗′0 (P1) = δ∗′1 (P0) = r + γ and P1 − P0 =
δ∗0 (P1)−δ∗1 (P0)

r+γ then

δ∗0 (P1)− δ∗1 (P0)

r + γ
= P1 − P0 =

∫ δ̄
δ∗0 (P1)

dH(0, δ)

δ∗′0 (P1)dH(0, δ∗0 (P1))
+

∫ δ∗1 (P0)
0 dH(1, δ)

δ∗′1 (P0)dH(1, δ∗1 (P0))
≤

≤ [
(δ̄ − δ∗0 (P1)) supδ∈(δ∗0 (P1),1]

dH(0, δ)

dH(0, δ∗0 (P1))
+

δ∗1 (P0)) supδ∈[0,δ∗1 (P0))
dH(1, δ)

dH(1, δ∗1 (P0))
]

1
r + γ

≤

=
δ̄ − δ∗0 (P1) + δ∗1 (P0)

r + γ

and ≤ inequality becomes = for G ∼ U[0, δ̄]

C Summary of empirical fidnings

Findings from section 3 can be summarized by the following list with changes calculated for the

years 2012 and 2021:

Finding 1 The number of flipped transactions was 4.55% of total volume of transactions in 2012

and nearly double to 8.05% in 2021.

Finding 2 Observables explain 40% of variation of house prices.

Finding 3 Real house prices grew by 76%, average house price grew by 68% and expressed in

number of years of average consumption by 47%.

Finding 4 Mortgage rates decreased from 3.62% to 2.47%.

Finding 5 Total trade volume of trade increased by 135%.

Finding 6 There is negative correlation between prices and level of intermediation.

Finding 7 Average gross return on flipped houses increased from 1.29 to 1.32. And are higher than

on other multiply traded houses in the sample.

D Algorithm

Solving the model uses policy iteration: for given cutoffs, solve for distributions, then solve the

value functions, and lastly, update the cutoffs.

To solve for distributions, use Law of Motion and Accountings to first solve for H(1, δ1(P0)), sec-
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ond for H(1, δ0(P1)) and later for remaining δ of H(1, δ). Using accountings get dH(1, δ), dH(0, δ)

and find F(1) and F(0) using flipper trade condition.

Finding H(1, δ) is equivalent to solving quadratic equation ρx2 + bx + c = 0 in five cases:

Case 1: δ = δ1(P0)

b = ρ(1 − δ1 − s + F(1)) + γ + λ( f − F(1)) c = −γδ1(s − F(1))

Case 2: δ = δ0(P1)

b = ρ(1 − δ0 − s + F(1)) + γ c = −γδ0(s − F(1)) + λ( f − F(1))H(1, δ1)

Case 3: δ ∈ [0, δ1(P0))

b = ρ(1 − δ − s + F(1)) + γ + λ( f − F(1)) c = −γδ(s − F(1))

Case 4: δ ∈ (δ1(P0), δ0(P1))

b = ρ(1 − δ − s + F(1)) + γ + λF(1) c = −γδ(s − F(1)) + λ( f − F(1))H(1, δ1)

Case 5: δ ∈ (δ0(P1), 1]

b = ρ(1 − δ − s + F(1)) + γ + λF(1)

c = −γδ(s − F(1)) + λ( f − F(1))H(1, δ1)− λF(1)(δ − δ0 + H(1, δ0))

Next, to solve for reservation values, observe that integration is a linear operator, which allows us

to use a matrix representation of a problem.

Define grid on a delta vector (denoted by Y with M = 100)

Y = [δ0, δ1, . . . , δM]

and vector of reservation values

Xn = [∆Vn(δ
0), ∆Vn(δ

1), . . . , ∆Vn(δ
M)]

Write problem in matrix form using Xδ1
n = ∆Vn(δ1) Xδ0

n = ∆Vn(δ0) and diagonal matrix Σ , upper

triangular matrixH0, lower triangle matrixH0 and matrix dG defined as:

Σi,i = σ(δi)

H0i,j = dH(0, δi)1[δi < δj]
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H1i,j = dH(1, δi)1[δi > δj]

dGi,j =
1
δ̄

We can write in matrix form

ΣXn+1 = Y + γdG ⊗ 1TλF(0)Xδ1
n 1[δ1 > δi] + λF(1)Xδ0

n 1[δ0 < δi] +
ρ

2
H0 +

ρ

2
H1

which becomes

Xn+1 = [Y + λF(0)Xδ1
n 1[δ1 > Y] + λF(1)Xδ0

n 1[δ0 < Y]][Σ − γdG ⊗ 1T − ρ

2
H0 − ρ

2
H1]−1

and iterate until convergence with tolerance 10−10. This step requires a low number of iterations

and is a feature continuous-time method. Figure 12 presents Σ matrix; it has quasi diagonal form

and is well conditioned.

Figure 12: Σ matrix
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Next step requires finding V(1, ·), V(0, ·), standard value function iteration procedure until con-

vergence (with tolerance 10−10), applied to:

Vn+1(1, δ) =
δ

r + γ
+

γ

r + γ

∫ δ̄

0
Vn(1, δ′)dG(δ′) +

λ

r + γ
F(0)(∆V(δ1)− ∆V(δ))1[δ < δ1]+

+
ρ

r + γ

∫ δ̄

δ

1
2
[∆V(δ′)− ∆V(δ)]dH(0, δ′)

Vn+1(0, δ) =
γ

r + γ

∫ δ̄

0
Vn(0, δ′)dG(δ′) +

λ

r + γ
F(1)(−∆V(δ0) + ∆V(δ))1[δ > δ0]

− ρ

r + γ

∫ δ

0

1
2
[∆V(δ′)− ∆V(δ)]dH(1, δ′)
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Finally, using value function condition at cutoffs δq(P1−q) combined with value functions for flip-

pers with its equilibrium condition allows us to express delta explicitly as a function of value

functions and distributions. This way, we can introduce the next iteration using current iteration

functions as:

δn+1
0 = σn(δn

0 )[(1 +
r
λ

1
Hn(0, 1)− Hn(0, δn

0 )
)Wn(1)− Wn(0)]−

−ρ

2

∫ 1

δn
0

∆Vn(δ′)dHn(0, δ′)− ρ

2

∫ δn
0

0
∆Vn(δ′)dHn(1, δ′)− γ

∫ 1

0
∆Vn(δ′)dG(δ′)

δn+1
1 = σn(δn

1 )[W
n(1)− (1 +

r
λ

1
Hn(1, δn

1 )
)Wn(0)]−

−ρ

2

∫ 1

δn
1

∆Vn(δ′)dHn(0, δ′)− ρ

2

∫ δn
1

0
∆Vn(δ′)dHn(1, δ′)− γ

∫ 1

0
∆Vn(δ′)dG(δ′)

We look at those expressions ( absolute lhs minus rhs with tolerance 10−5 ) to find a fixed point.

Those cutoffs come from proposition from section 2 and proof of the existence of reservation value

from Hugonnier et al. (2020).

E Distribution of house prices - data

Additional data The last data set comes from the Sustainable Energy Authority of Ireland, which

provides detailed information on the energy efficiency and physical characteristics of houses, such

as the number of square meters, rooms, windows, and doors. Issuing energy efficiency certifica-

tion is mandatory to list houses for sale.

We have a daily date for such inspection, which we will claim as putting the house on the market.

The left panel of Figure 13 presents the price distribution in 2012. Running hedonic regression

on City, Quarter-Year observable, we obtain the price distribution of average houses, presented

on the right panel of Figure 13. Results of this and other versions of hedonic regression are pre-

sented in Table E. Scope on the market in housing literature shows that households tend to look

for houses in the same city, while Quarter-Year variation is taken care of partially due to within

year cyclically of house prices with most houses bought in the last quarter of the year.

Figure 14 shows spatial distributions and quality of new sellers in Ireland in 2012, with higher

prices and higher quality concentrated around the east coast, around Dublin. Though we don’t

control for quality, the spatial correlation of quality and prices is taken care of while regressing

location.
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Figure 13: Price Distribution - data

(a) Prices (b) Average House Prices

Table 17: Regression Results with Different Fixed Effects

(1) (2) (3) (4) (5)

Location FE County City District City District
Quarter-Year FE × × × ✓ ✓

Constant 12.16∗∗∗ 12.16∗∗∗ 12.19∗∗∗ 12.16∗∗∗ 12.18∗∗∗

(0.0008) (0.0008) (0.0007) (0.0008) (0.0007)

Observations 638,751 638,751 561,010 629,920 532,097
R-squared 0.273 0.378 0.550 0.426 0.566

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Figure 14: Prices and quality across space

(a) Price distribution (b) Quality distribution
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F Properties of the model

Figure 15 presents reservation values (left panel) and probability distribution functions (right) for

owners (blue curve) and non-owners). The green dotted line marks cutoff δ∗1 below which house-

hold homeowner trades with flipper without a house, conditional on meeting. Above this cutoff,

the owner household won’t meet and trade with a non-nonowner. Similarly, a household at cut-

off δ∗0 denotes indifference delta for a non-ownership meeting with a flipper who has a house.

The section between [δ∗1 , δ∗0 ] marks an inaction region where trade is only possible between house-

holds. The size of this inaction region shrinks compared to Section 219. Reservation values are

strictly increasing continuous function with kinks at both cutoffs.

The right panel of Figure 15 shows the probability distribution functions of owners (blue) and

non-owners). The mass of owners is increasing in type, while non-owners are decreasing, with

jumps at the cutoffs.

Figure 15
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F.1 Prices

Price distribution presented in the left panel of Figure 16 is characterized by symmetric shape,

relatively small variance, and kinks.

Kinks come from the propagation of cutoffs through prices, with the most significant two coming

from flipper trade prices. Two spikes in price distribution are prices from flipper trade, and height

comes from the grid on G, with such prices being of measure zero. The right panel of Figure 16

presents the cumulative distribution function of prices with visible jumps at prices corresponding

to flipper-household trade.

19Where was equal to half of the mass of the household, the biggest for uniform G.
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Figure 16: Distribution of prices from model
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F.2 Price dispersion: model vs data

Plot 17 shows the model’s performance against data for price distributions. The model calibrated

to mean not quite well explains other moments of the price distribution, a feature of search models

discussed among others in Rekkas et al. (2020)20.

Figure 17
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20Magnitude of mismatch of variance of prices is similar to that paper, in which authors focus on esti-
mating distribution G in a directed search model of housing with one sided heterogeneity on buyers only.
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G Matching data to model

In particular, there are non-trivial masses of trade of households with households within 2 years

and flippers with households in over 2 years between trades. The former rate is equal:

ρ
∫ 1

0

∫ 1

δ
dH(0, δ′) ∗ exp(−2ρ

∫ δ

0
dH(1, δ′′))dH(1, δ)

And the latter is equal:

λF(0)
∫ δ1

0
dH(1, δ′)(1− exp(−2λ

∫ 1

δ0

dH(0, δ′′)))+λF(1)
∫ 1

δ0

dH(0, δ′)(1− exp(−2λ
∫ δ1

0
dH(1, δ′′)))
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Figure 18: Tenure time distribution
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H Misallocation, welfare cost of search, excess rates

Misallocation
M(δ) =

∫ δ

0
1{δ′ < δ∗}dH(1, δ′) +

∫ δ

0
1{δ′ ≥ δ∗}dH(0, δ′)

it’s density

M′(δ) = 1{δ < δ∗}dH(1, δ) + 1{δ ≥ δ∗}dH(0, δ)

Welfare cost of search friction

S(δ) = ∑
q

∫ δ

0
V(q, δ′)dH(q, δ′)− ∑

q

∫ δ

0
VF(q, δ′)dHF(q, δ′)

it’s density

S′(δ) = V(0, δ)dH(0, δ) + V(1, δ)dH(1, δ)− VF(0, δ)1{δ < δ∗} − VF(1, δ)1{δ ≥ δ∗}

where the value function of owners in the frictionless economy is

VF(1, δ) =
(1−s)(r−1)

r 1{δ < δ∗}+ δ1{δ ≥ δ∗}+ γ(1−s)2

r + γ
r−1 (

1
2 −

(1−s)2

2 )

r + γ − 1

with pdf dH(1, δ) = 1{δ ≥ δ∗} the value function of nonowners in the frictionless economy is

VF(0, δ) =
[δ − (1−s)(r−1)

r ]1{δ ≥ δ∗} − γs(1−s)
r + γ

r−1 (
1
2 −

(1−s)2

2 )

r + γ − 1

with pdf dH(0, δ) = 1{δ < δ∗}.
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Note that ∆VF(δ) = δ∗
r

Excess rate Figure 19 illustrates the overall meeting rate for each level of delta and each household

type (blue sellers and yellow buyers), excluding the overall rate of meeting flippers.

Figure 19: Excess Trade intensities gross of meeting flipper
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Consumption equivalent per capita is calculated using the

cq/r =

∫ 1
0 V(q, δ)dH(δ, q)∫ 1

0 dH(δ, q)

where current owners are denoted by c1 and current nonowners by c0.

The consumption equivalent of the households per capita is equal to

c/r =
∑q

∫ 1
0 V(q, δ)dH(δ, q)

∑
q

∫ 1

0
dH(δ, q)︸ ︷︷ ︸
=1
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The consumption equivalent of all agents per capita is equal to

c∗/r =
∑q

∫ 1
0 V(q, δ)dH(δ, q) + ∑q F(q)W(q)

∑
q

∫ 1

0
dH(δ, q) + ∑

q
F(q)︸ ︷︷ ︸

=1+ f

J Model with observable types

Conditions below correspond to the model with public information about types and ex-post bar-

gaining with weight θ. The main difference with the baseline model is in cutoff δ̂ and in the

flipper’s problem.

Introduce the reservation value of flippers:

∆W = W(1)− W(0)

Prices
P0(δ) = θ∆V(δ) + (1 − θ)∆W

P1(δ) = θ∆V(δ) + (1 − θ)∆W

surplus of household buyers satisfies

0 ≤ P0(δ)− ∆V(δ)

0 ≤ −P1(δ) + ∆V(δ)

Denote by δ̂ agent who is indifferent between trade and no trade, coincides for both buyers and

sellers. It comes from a lack of transaction cost and the constant reservation value of the flipper.

Stationary distribution Homeownership (inflow and outflow to [0, δ], q = 1)

λF(1)
∫ max{δ,δ̂}

δ̂
dH(0, δ′)︸ ︷︷ ︸

F sells to HH

+ γG(δ)
∫ 1

δ
dH(1, δ′)︸ ︷︷ ︸

inflow from change of type from[δ,1]

= (26)

= λF(0)
∫ min{δ,δ̂}

0
dH(1, δ′)︸ ︷︷ ︸

F buys from HH

+ γ(1 − G(δ))
∫ δ

0
dH(1, δ′)︸ ︷︷ ︸

outflow from change of type to[δ,1]

+ ρ
∫ δ

0
dH(1, δ′)

∫ 1

δ
dH(0, δ′)︸ ︷︷ ︸

HH trades with HH

(27)

Flippers problem

rW(0) = λ
∫ δ̂

0
θ(∆W − ∆V(δ′))dH(1, δ′)
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rW(1) = λ
∫ δ̄

δ̂
θ(∆V(δ′)− ∆W)dH(0, δ′)

∆W =
λθ

∫ δ̄
δ̂ ∆V(δ′)dH(0, δ′) + λθ

∫ δ̂
0 ∆V(δ′)dH(1, δ′)

r + λθ
∫ δ̄

δ̂ dH(0, δ′) + λθ
∫ δ̂

0 dH(1, δ′)

Household problem

σ(δ)∆V(δ) = δ + γ
∫ 1

0
∆V(δ′)dG(δ′) + λ(1 − θ)F(0)∆W1[δ < δ̂] + λ(1 − θ)F(1)∆W1[δ > δ̂]+

+
ρ

2

∫ 1

δ
∆V(δ′)dH(0, δ′) +

ρ

2

∫ δ

0
∆V(δ′)dH(1, δ′)

σ(δ) = r + γ + λ(1 − θ)F(0)1[δ < δ̂] + λ(1 − θ)F(1)1[δ > δ̂] +
ρ

2

∫ 1

δ
dH(0, δ′) +

ρ

2

∫ δ

0
dH(1, δ′)

K Data validation

How good is the data set used in 3 in matching price indexes- common for literature on house

price indexes test? Figure 20 considers that. On the left panel, the green line uses transaction data

from 3 - it takes pairs of houses transacted which are not flipped21 between 2010 and 2021 and

calculates the rate of change for each year using expenditure weights. The Violet line is a Case-

Shiller type index reported by the Central Statistics Office Ireland (CSO). The difference in those

samples comes from the fact that the statistical offices can identify trades in the past, making

the price index depend on more observations- repeated sales. My data in the early years of a

sample does not have too many observations by construction, and in that part of the figure, rates

of change in HPIs don’t match well. Later on, post-2015, the two curves are similar in shape and

behavior. In constructing the green sample, we took a conservative stance on flipped transactions,

assuming that all those trades importantly change the quality of housing, therefore excluding it

from constant quality HPI.

What would be the behavior of the house price index when we don’t exclude flippers? The right

panel of Figure 20 presents unweighted (red) and expenditure weighted HPI presents the behavior

of changes in HPI between years when we add flipped transactions.

Left panel of 21 presents average prices using both transactions on survey data (left panel) and

volume of trade from transaction data (right panel). Using the fourth panel of HFCS, we marked

(as x) average prices at the time of acquisition. Average prices from transaction data (blue dot-

ted line) show true average prices. For almost all years, survey responses overestimate house

prices. This highlights the importance of using full-price distribution and tax data instead of sur-

21with restricting at 90 days from below between trade- common Case-Shiller condition
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Figure 20: Price indexes- Data Validation

(a) Data vs Statistical Office (CSO) changes in
HPI

(b) Changes of HPI calculated including all
flipped trades

vey sources. The right panel shows average prices in 2021 across 26 counties of Ireland. Higher

prices are observed in the east part of Ireland, specifically around the county of Dublin, the capital

city.

Figure 21: Prices and Quantities

(a) Average Prices

(b) Across space

Note: The left panel compares average house prices derived from survey data (HFCS) and actual transaction
data across years, highlighting a tendency for survey data to overestimate prices at the time of acquisition.
The blue dotted line represents the more accurate transaction-based price data. This comparison under-
scores the importance of using detailed transaction records for accurate market analysis. The right panel
maps the average house prices in 2021 across Ireland’s 26 counties, with notably higher prices around
Dublin, reflecting spatial price disparities.
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